期刊文献+

计算机工程与设计 被引量:8

Method and application of SVM optimized by improved sparrow search algorithm
下载PDF
导出
摘要 针对麻雀搜索算法在迭代后期种群多样性减少、易陷入局部最优等问题,提出改进麻雀搜索算法(ISSA)。引入Sobol序列,提高初始种群的多样性;引入黄金正弦算法,平衡全局搜索和局部开发能力;引入高斯差分变异,提高种群跳出局部最优的能力。10种基准函数的测试结果表明,ISSA有着更好的寻优精度与收敛速度。使用ISSA对SVM的超参数进行寻优,构建分类模型并应用于断路器故障诊断,验证了该方法在工程应用上的可行性。 Aiming at the problems that the population diversity of sparrow search algorithm decreases and it is easy to fall into local optimization in the late iteration,an improved sparrow search algorithm(ISSA)was proposed.The diversity of initial solution was improved by introducing Sobol sequence.The abilities of global search and local development were balanced by intro-ducing the Golden sine algorithm.The ability of the solution to jump out of the local optimum was improved by introducing the Gaussian difference mutation.The test results of ten benchmark functions show that ISSA has better search accuracy and convergence speed.The hyperparameters of SVM were optimized using ISSA,the classification model was constructed and applied to circuit breaker fault diagnosis.The feasibility of this method is verified in engineering application.
作者 石颉 杜国庆 SHI Jie;DU Guo-qing(School of Electronic and Information Engineering,Suzhou University of Science and Technology,Suzhou 215000,China)
出处 《计算机工程与设计》 北大核心 2023年第3期954-960,F0003,共8页 Computer Engineering and Design
关键词 改进麻雀搜索算法 Sobol序列 黄金正弦算法 高斯差分变异 支持向量机 参数优化 故障诊断 工程应用 improved sparrow search algorithm Sobol sequence golden sine algorithm Gaussian difference mutation support vector machine parameter optimization fault diagnosis engineering application
  • 相关文献

参考文献9

二级参考文献64

共引文献426

同被引文献107

引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部