摘要
Carbon fiber reinforced polyetheretherketone(CFRPEEK)possesses a similar elastic modulus to that of human cortical bone and is considered as a promising candidate to replace metallic implants.However,the bioinertness and deficiency of antibacterial activities impede its application in orthopedic and dentistry.In this work,titanium plasma immersion ion implantation(Ti-PⅢ)is applied to modify CFRPEEK,achieving unique multi-hierarchical nanostructures and active sites on the surface.Then,hybrid polydopamine(PDA)@ZnO-EDN1 nanoparticles(NPs)are introduced to construct versatile surfaces with improved osteogenic and angiogenic properties and excellent antibacterial properties.Our study established that the modified CFRPEEK presented favorable stability and cytocompatibility.Compared with bare CFRPEEK,improved osteogenic differentiation of rat mesenchymal stem cells(BMSCs)and vascularization of human umbilical vein endothelial cells(HUVECs)are found on the functionalized surface due to the zinc ions and EDN1 releasing.In vitro bacteriostasis assay confirms that hybrid PDA@ZnO NPs on the functionalized surface provided an effective antibacterial effect.Moreover,the rat infected model corroborates the enhanced antibiosis and osteointegration of the functionalized CFRPEEK.Our findings indicate that the multilevel nanostructured PDA@ZnO-EDN1 coated CFRPEEK with enhanced antibacterial,angiogenic,and osteogenic capacity has great potential as an orthopedic/dental implant material for clinical application.
基金
funded by the National Natural Science Foundation of China(No.81921002,No.82100963,No.81873709)
the Natural Science Foundation of Shanghai Science and Technology Commission(21ZR1437100)
Shanghai Rising-Star Program(21QA1405400).