期刊文献+

Enhancement of terbium efficiency by gallium and copper co-doping in(Pr,Nd)-Fe-B sintered magnets 被引量:2

原文传递
导出
摘要 It is well known that Tb substitution for(Pr,Nd)in(Pr,Nd)-Fe-B based sintered magnetic materials is an effective way to increase intrinsic coercivity,but it is not quite clear whether the increment depends on the different matrix phases with various doping ingredient or not,which is essential to develop high quality magnets with high coercivity more efficiently and effectively with economic consumption of expensive Tb and other costly heavy rare earths.In this paper,we investigated the efficiency of Tb substitution for magnetic property in(Pr,Nd)-Fe-B sintered permanent magnets by co-doping Ga and Cu elements.It is shown that Ga and Cu co-doping can effectively improve the efficiency of Tb substitution to increase the thermal stability and the coercivity.The intrinsic coercivity increases up to 549 and 987 kA/m respectively by 1.5 wt%and 3.0 wt%Tb substitution in Ga and Cu co-doped magnets while the intrinsic coercivity increases up to only 334 and 613 kA/m respectively by the same amounts of Tb substitution in non-Ga and low-Cu magnets.In other words,it demonstrates that there is about 329-366 kA/m linear equivalent enhancement of intrinsic coercivity by 1.0 wt%Tb substitution for(Pr,Nd)in Ga and Cu co-doped magnets.The temperature coefficients of both intrinsic coercivityβand remanenceαat 20-150℃by 3.0 wt%Tb substitution for the magnets with Ga and Cu co-doping are-0.47%/K and-0.109%/K respectively,and in contrast those values are-0.52%/K and 0.116%/K respectively for the non-Ga and low-Cu magnets.It is the principal reason for more efficient enhancement of magnetic property by Tb substitution in the Ga and Cu co-doped magnets in which Tb atoms are expelled from triple junction phases(TJPs)to penetrate into the grain boundary phases(GB phases)and thus modify the grain boundary.It is prospected that the efficiency of Tb substitution would rely on different matrix phases with various doping constituents.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第4期572-577,共6页 稀土学报(英文版)
基金 Project supported by the National Natural Science Foundation of China(51901089,52061015) Young Elite Scientists Sponsorship Program by CAST(YESS20200250) Young Talents Program of Jiangxi Provincial Major Discipline Academic and Technical Leaders Training Program(20212BCJ23008) China Postdoctoral Science Foundation(2020M682064) Postdoctoral Science foundation of Jiangxi Province(2020KY19) Technology Program of Fujian Province(2020H6201,2021T3063)。
  • 相关文献

同被引文献89

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部