期刊文献+

基于遗传粒子群算法的海上风电系统参数优化 被引量:2

Parameter optimization of offshore wind power system based on genetic particle swarm optimization algorithm
下载PDF
导出
摘要 为提升海上风电系统的运行能力,使其阻尼比指标始终保持相对较高的数值水平,提出基于遗传粒子群算法的海上风电系统参数优化方法。根据遗传算法优化电信号参数,采用粒子群算法判别电信号能力,通过设置电量频谱参数完成基于遗传粒子群算法的电量频谱分配。建立风电系统传递函数,利用发电机建模原则计算DFIG-PSS优化参量的具体数值,实现对海上风电系统参数的按需优化。实验结果表明,随着遗传粒子群算法优化手段的应用,电信号阻尼比指标能够长期保持较高的数值水平,与基于PSO算法的调度模型相比,更能提升海上风电系统的稳定运行能力,符合实际应用需求。 In order to improve the operation capacity of offshore wind power system and keep its damping ratio index at a relatively high numerical level,a parameter optimization method of offshore wind power system based on genetic particle swarm optimization algorithm is proposed.The electric signal parameters are optimized according to the genetic algorithm,the particle swarm optimization algorithm is used to judge the electric signal ability,and the electric power spectrum allocation based on the genetic particle swarm optimization algorithm is completed by setting the electric power spectrum parameters.The wind power system transfer function is established,and the specific values of DFIG-PSS optimization parameters are calculated by using the generator modeling principle,so as to realize the on⁃demand optimization of offshore wind power system parameters.The experimental results show that,with the application of genetic particle swarm optimization,the electric signal damping ratio index can keep a high numerical level for a long time.Compared with the dispatching model based on PSO algorithm,it canimprove the stable operation ability of offshore wind power system,which meets the practical applicationrequirements.
作者 杨张斌 李鹏 郭旺 刘功梅 汤筱茅 YANG Zhangbin;LI Peng;GUO Wang;LIU Gongmei;TANG Xiaomao(Electromechanical Technology Center of China Three Gorges Construction Engineering(Group)Co.,Ltd.,Chengdu 610094,China;Xinjiang Goldwind Technology Co.,Ltd.,Urumqi 830026,China;Engineering Construction Department of China Three Gorges Corporation,Chengdu 610094,China;Sanxia Jinggong Energy Investment Co.,Ltd.,Chengdu 610094,China;Electric Power Production and Marketing Department,Three Gorges Group Fujian Energy Investment Co.,Ltd.,Chengdu 610094,China)
出处 《电子设计工程》 2023年第9期128-131,136,共5页 Electronic Design Engineering
基金 中国长江三峡集团有限公司科研项目(201903117)。
关键词 遗传粒子群算法 海上风电系统 电量频谱参数 传递函数 阻尼比 DFIG-PSS优化参量 genetic particle swarm optimization algorithm offshore wind power system electric quantity spectrum parameter transfer function damping ratio optimization parameters of DFIG-PSS
  • 相关文献

参考文献16

二级参考文献145

共引文献189

同被引文献37

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部