期刊文献+

Establishing the Forecasting Model with Time Series Data Based on Graph and Particle Swarm Optimization

下载PDF
导出
摘要 In recent years,a wide variety of fuzzy time series(FTS)forecasting models have been created and recommended to handle the complicated and ambiguous challenges relating to time series data from real-world sources.However,the accuracy of a model is problem-specific and varies across data sets.But a model’s precision varies between different data sets and depends on the situation at hand.Even though many models assert that they are better than statistics and a single machine learning-based model,increasing forecasting accuracy is still a challenging task.In the fuzzy time series models,the size of the intervals and the fuzzy relationship groups are thought to be crucial variables that affect the model’s forecasting abilities.This study offers a hybrid FTS forecasting model that makes use of both the graph-based clustering technique(GBC)and particle swarm optimization(PSO)for adjusting interval lengths in the universe of discourse(UoD).The suggested model’s forecasting results have been compared to those provided by other current models on a dataset of enrollments at the University of Alabama.For all orders of fuzzy relationships,the suggested model outperforms its counterparts in terms of forecasting accuracy.
机构地区 Faculty of Electronic
出处 《Journal of Computer Science Research》 2023年第2期1-15,共15页 计算机科学研究(英文)
基金 the support of Thai Nguyen University of Technology(TNUT)to this research.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部