期刊文献+

Improving the electrochemical performance of α-MoO_(3) electrode using aluminium trifluoromethanesulfonate water-in-salt electrolyte

下载PDF
导出
摘要 Orthorhombic molybdenum trioxide(α-MoO_(3)) electrode material experiences severe capacity fading and poor cycling stability in aqueous electrolytes.We investigated the charge-storage performance of α-MoO_(3) electrode in aluminium trifluoromethanesulfonate(Al(OTf)_(3))-based salt-in-water electrolyte(SiWE) and water-in-salt electrolyte(WiSE).It was found that α-MoO_(3) electrode exhibits significantly different cycling stabilities in both electrolytes with capacity retentions of 8% using the former and87% using the latter.This is because α-MoO_(3) electrode maintains its crystal structure upon cycling in WiSE,but experiences substantial structural collapses and partial dissolution upon cycling in SiWE.This behaviour was inferred from both operando electrogravimetry and ex situ analyses.Research results suggest that the predominant charge-storage mechanism in a-MoO_(3) electrode using WiSE is the intercalation of protons produced from electrolyte hydrolysis with some contribution from surface pseudocapacitance enabled by Al3+ions.A two-volt full cell fabricated from α-MoO_(3) electrode as anode and copper hexacyanoferrate(CuHCF) electrode as cathode using WiSE delivers volumetric and gravimetric energies of 10.4 Wh/L and 26.5 Wh/kg,respectively,with 78% capacity retention after 2500 cycles.This study provides an insightful understanding of the electrochemical performance of α-MoO_(3) electrode in Al(OTf)_(3)-based electrolytes.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期123-134,I0004,共13页 能源化学(英文版)
基金 supported by the Australian Research Council under the ARC Laureate Fellowship program(FL170100101)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部