摘要
For active distribution networks(ADNs)integrated with massive inverter-based energy resources,it is impractical to maintain the accurate model and deploy measurements at all nodes due to the large-scale of ADNs.Thus,current models of ADNs usually involve significant errors or even unknown occurances.Moreover,ADNs are usually partially observable since only a few measurements are available at pilot nodes or nodes with significant users.To provide a practical Volt/Var control(VVC)strategy for such networks,a data-driven VVC method is proposed in this paper.First,the system response policy,approximating the relationship between the control variables and states of monitoring nodes,is estimated by a recursive regression closed-form solution.Then,based on real-time measurements and the newly updated system response policy,a VVC strategy with convergence guarantee is realized.Since the recursive regression solution is embedded in the control stage,a data-driven closedloop VVC framework is established.The effectiveness of the proposed method is validated in an unbalanced distribution system considering nonlinear loads,where not only the rapid and self-adaptive voltage regulation is realized,but also systemwide optimization is achieved.
基金
supported by the Research Project of China Southern Power Grid Corporation:The demonstration and application of the virtual power plant intelligent operation and management platform with source-grid coordination,No.GDKJXM20185069 (032000KK 52180069)。