期刊文献+

基于偏最小二乘法的北京市用水量预测 被引量:1

Forecast of Water Consumption in Beijing Based on Partial Least Square Method
下载PDF
导出
摘要 水的供给问题是城市基础建设的重要任务之一,而对城市用水量的预测直接影响到城市的供水规划。本文对北京市2010-2020年用水量数据及其影响因素进行分析,分别建立普通多元线性回归模型和偏最小二乘回归模型对北京市用水量进行拟合和仿真预测,结果显示,偏最小二乘回归模型的系数解释更符合实际意义,且外推预测效果更好,实际应用价值较强。 Water supply is a critical undertaking in urban infrastructure development,and accurate prediction of urban water consumption is essential for effective water supply planning.In this study,we analyzed water consumption data and influencing factors in Beijing from 2010 to 2020.We developed both ordinary multivariate linear regression models and partial least squares regression models to fit and simulate the water consumption in Beijing.Our findings indicate that the coefficients derived from the partial least squares regression model provide a more meaningful interpretation,and its extrapolation prediction outperforms the ordinary multivariate linear regression model.Hence,the partial least squares regression model exhibits strong practical utility in water supply planning.
作者 曾令麒 Zeng Lingqi(School of Mathematical Sciences,South China Normal University,Guangzhou,China)
出处 《科学技术创新》 2023年第10期5-8,共4页 Scientific and Technological Innovation
关键词 用水量预测 多元线性回归 偏最小二乘回归 water consumption forecast multiple linear regression partial least squares regression
  • 相关文献

参考文献4

二级参考文献22

共引文献28

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部