期刊文献+

CaO-MgO-FeO-Al_(2)O_(3)-SiO_(2)体系还原炉渣的黏度分析

Viscosity Analysis of Reducing Slag in CaO-MgO-FeO-Al_(2)O_(3)-SiO_(2) System
下载PDF
导出
摘要 本研究采用高钙渣型对氧化铜精矿在1 500℃温度下进行1 h的焦炭还原熔炼,对产出的高钙渣进行黏度测定。其间从熔渣结构的角度研究组分和温度对黏度的影响机制,并进行TG-DSC和SEM+EDS分析。试验结果显示,随着FeO与SiO_(2)配料比的升高,碱性氧化物对硅酸盐网络具有解聚作用,同时使得黏度降低。这间接验证了AlO_(4)^(5-)四面体的形成和补网增加黏度的作用,也说明CaO和FeO可以作为电荷补偿剂,促进AlO_(4)^(5-)发挥补网作用。熔渣的黏流活化能为166.99~235.26 kJ/mol。TG-DSC分析表明,该炉渣满足微晶玻璃制备的基本要求。SEM+EDS分析表明,炉渣主要由线性硅灰石构成,黏度较大,有未来得及凝聚分离的金属铜和冰铜微粒存在于渣中。 In this study,a high calcium slag type is used to conduct a 1 h coke reduction smelting of copper oxide concentrate at a temperature of 1500℃,and the viscosity of the produced high calcium slag is measured.During this period,the influence mechanism of components and temperature on viscosity is studied from the perspective of slag structure,and TG-DSC and SEM+EDS analysis are conducted.The experiment results show that with the increase of the proportion of FeO to SiO_(2),the alkaline oxides have a depolymerization effect on the silicate network,while reducing the viscosity.This indirectly verifies the formation of AlO_(4)^(5-)tetrahedron and the role of mesh reinforcement in increasing viscosity,and also indicates that CaO and FeO can be used as charge compensation agents to promote the role of AlO_(4)^(5-)mesh reinforcement.The viscous flow activation energy of the slag is 166.99~235.26 kJ/mol.TG-DSC analysis shows that the slag meets the basic requirements for the preparation of microcrystalline glass.SEM+EDS analysis shows that the slag is mainly composed of linear wollastonite with high viscosity,and there are metallic copper and matte particles that have not yet been agglomerated and separated in the slag.
作者 张磊 蒋开喜 谢锋 王伟 路殿坤 ZHANG Lei;JIANG Kaixi;XIE Feng;WANG Wei;LU Diankun(School of Metallurgy,Northeastern University,Shenyang 110819,China;BGRIMM Technology Group,Beijing 100044,China;Fuzhou University,Fuzhou 350108,China)
出处 《中国资源综合利用》 2023年第4期1-5,共5页 China Resources Comprehensive Utilization
基金 “十三五”国家重点研发计划项目(2019YFC1907304)。
关键词 氧化铜精矿 熔渣结构 黏度 活化能 电荷补偿剂 copper oxide concentrate slag structure viscosity activation energy charge compensation agent
  • 相关文献

参考文献2

二级参考文献24

  • 1徐克华.密闭鼓风炉炉渣研究[J].有色金属(冶炼部分),2004(3):9-12. 被引量:5
  • 2J. S. Shin, J.S. Bae, H.J. Kim Lavernia, Z. H. Lee, Mater. Sci S. Taniguchi, K. Yamamoto, D Sci. Eng. A 308 (2001) 250-257.
  • 3H. M. Lee, T.D. Lee, E. J Eng. A 407 (2005) 282-290.
  • 4Megumi, T. Shibata, Mater S. Suzuki, K. Yanagihara, S. Yamazaki, K. Tanaka, Y. Wase- da, Surf. Interface Anal. 35 (2003) 276-281.
  • 5H. E. Evans, D. A. Hilton, R. A. Holm, S.J. Webster, Oxid. Met. 19 (1983) 1-18.
  • 6T. Adachi, G. H. Meier, Oxid. Met. 27 (1987) 347- 366.
  • 7J.L. Ruan, Y. Pei, D. Fang, Acta Mech. 223 (2012) 2597- 2607.
  • 8Y. L. Yang, C. H. Yang, S.N. Lin, C. H. Chen, W.T. Tsai, Mater. Chem. Phys. 112 (2008) 566-571.
  • 9C. H. Yang, S. N. Lin, C. H. Chen, W. T. Tsai, Oxid. Met. 72 (2009) 145-157.
  • 10X. J. Liu, G. M. Cao, Y. Q. He, T. Jia, Z. Y. Liu, J. Iron Steel Res. Int. 20 (2013) No. 11, 73-78.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部