期刊文献+

基于有界成分分析的带内全双工数字自干扰抵消

Digital Self-Interference Cancellation Based on Bounded Component Analysis for In-Band Full-Duplex
下载PDF
导出
摘要 凭借能够提升频谱利用率的优势,带内全双工(In-Band Full Duplex,IBFD)技术有望成为现代无线通信系统的潜在方案。然而,在应用过程中却面临自干扰抵消(Self-Interference Cancellation,SIC)的巨大挑战。SIC可以从空域、模拟域和数字域3个方面来单独或组合实现。该文重点研究了IBFD数字SIC。针对传统数字SIC性能受到收发链路器件非理想因素限制的问题,该文建立了一种射频辅助链路的IBFD系统,利用有用信号和自干扰信号的有界性,设计了一种基于有界成分分析的数字SIC方法。在视距(Line Of Sight,LOS)和非视距(Non-Line Of Sight,NLOS)两种信道场景下,利用仿真和实测数据进行了验证分析。结果表明,相比较于最小二乘方法和独立成分分析方法,所提有界成分分析方法改善了SIC效果,并提高了系统误码率性能。 In-Band Full Duplex(IBFD)technique is expected to be the most potential scheme for modern wireless communication system,since it can prove the spectral efficiency.However,in the application process,it faces the great challenge of Self-Interference Cancellation(SIC).SIC can be realized separately or in combination from three aspects:propagation domain,analog domain and digital domain.This paper focuses on digital SIC in the IBFD.To solve the problem that the performance of the traditional digital SIC is limited by the non-ideality of the components of transceiver link,this paper adopts an IBFD system of Radio Frequency(RF)auxiliary link.By exploiting the boundedness of signal of interest and self-interfering signal,a digital SIC algorithm based on bounded component analysis is developed.Under the two channel scenarios of the Line Of Sight(LOS)and the Non-Line Of Sight(NLOS),the simulation and measured data are used to verify and analyze.The results show that compared with the least square method and independent component analysis method,the proposed bounded component analysis method improves the SIC effect and improves the bit error rate performance of the system.
作者 唐燕群 马伟峰 褚建军 魏玺章 TANG Yanqun;MA Weifeng;CHU Jianjun;WEI Xizhang(School of Electronics and Communication Engineering,Sun Yat-sen University,Shenzhen 518107,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2023年第5期1619-1626,共8页 Journal of Electronics & Information Technology
基金 广东省基础与应用基础研究基金(2019A1515011622) 国家自然科学基金(62071499)。
关键词 无线通信 带内全双工 有界成分分析 自干扰抵消 Wireless Communication In-Band Full-Duplex(IBFD) Bounded Component Analysis(BCA) Self-Interference Cancellation(SIC)
  • 相关文献

参考文献1

二级参考文献12

  • 1Harold W G,Peter G.ICA over Finite Fields——Separability and Algorithms[J].Signal Processing,2012,92(2):1796-1808.
  • 2Abed-Meraim K,Yong Xiang,Manton J H,et al.Blind Source Separation Using Second-order Cyclostationary Statistics[J].IEEE Transactions on Signal Processing,2001,49(4):694-701.
  • 3Benedikt L,Yang Bin.On the Solution of Circular and Noncircular Complex KLD-ICA in the Presence of Noise[C]//Proceedings of the 20th European Signal Processing Conference.Romania,Bucharest:IEEE Press,2012:1479-1483.
  • 4Puntonet C G,Prieto A.Neural Net Approach for Blind Separation of Sources Based on Geometric Properties[J].Neurocomputing,1998,35(5):141-164.
  • 5Pham D T.Blind Separation of Instantenaous Mixtrures of Sources Based on Order Statistics[J].IEEE Transactions on Signal Processing,2000,48(2):363-375.
  • 6Vrins F,Verleysen M,Jutten C.A Class of Convex Contrasts for Source Separation[C]//Proceedings of ICASSP’05.Washington D.C.,USA:IEEE Press,2005:161-164.
  • 7Vrins F,Lee J A,Verleysen M.A Minimum-range Approach to Blind Extraction of Bounded Sources[J].IEEE Transactions on Neural Network,2007,18(3):809-822.
  • 8Vrins F,Pham D T.Minimum Range Approach to Blind Partial Simultaneous Separation of Bounded Sources:Contrast and Discriminacy Properties[J].Neurocomputing,2007,54(3):1207-1214.
  • 9Cruces S.Bounded Component Analysis of Linear Mixtures:A Criterion Forminimum Convex Perimeter[J].IEEE Transactions on Signal Processing,2010,58(4):2141-2154.
  • 10Aguilera P,Cruces S.Blind Separation of Dependent Sources with a Bounded Component Analysis Deflationary Algorithm[J].IEEE Signal Processing Letters,2013,20(7):709-712.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部