摘要
Electrocatalytic synthesis of urea from CO_(2)and NO_(3)^(-)under ambient conditions provides an appealing alternative to the traditional energy-intensive urea synthetic protocol.Highly active and selective electrocatalysts for efficient urea production are therefore urgently desired owing to the unsatisfactory performance of the thus far reported catalysts.Herein,a phthalocyaninebased(Pc-based)covalent organic framework(COF),namely Co Pc-COF,fabricated from the nucleophilic substitution reaction of hexadecafluorophthalocyaninato cobalt with octahydroxylphthalocyanine cobalt,in situ grew on the surface of multilayered Ti O_(2)nanotubes(NTs),generating the Co Pc-COF@Ti O_(2)NTs composite.Powder X-ray diffraction analysis in combination with electron microscopy measurements discloses the uniform coating of crystalline Co Pc-COF on the multilayered Ti O_(2)NTs in Co Pc-COF@Ti O_(2)NTs.Remarkably,electrochemical tests reveal the superior electrocatalytic activity of Co Pc-COF@Ti O_(2)NTs towards urea production from CO_(2)and NO3-with a record-high yield of 1,205μg h^(-1)cm^(-2)and an outstanding Faraday efficiency of 49%at-0.6 V versus reversible hydrogen electrode due to the significant synergistic catalysis effect.In situ attenuated total reflection infrared spectroscopic investigation and theoretical calculations unveil the efficient C–N coupling reaction between*CO intermediate derived from CO_(2)on Co Pc moieties and*NH2intermediate formed from NO_(3)^(-)on Ti O_(2)NTs during the urea formation process over Co Pc-COF@Ti O_(2)NTs.This work should be helpful towards designing and fabricating high-performance electrocatalysts for sustainable synthesis of urea through efficient synergistic effect of multiactive centers.
基金
supported by the National Natural Science Foundation of China(22235001,22175020,21871024)
the Interdisciplinary Research Project for Young Teachers of USTB(FRFIDRY-21-028)。