摘要
为了解决采用第一性原理、分子动力学等方法对二硫化钼(MoS_(2))力学性能研究时所需计算代价过大的问题,提出了采用有限元方法建立原子势能和结构力学理论中梁的应变能之间的等价关系,将MoS_(2)的共价键等效成圆形截面梁,通过线性和非线性本构关系,探究单层MoS_(2)纳米带单轴受压下的力学性能.模拟结果表明:所得结果精度可以满足计算要求;扶手型和锯齿型MoS_(2)的弹性模量均随着尺寸的增加而减小,尺寸越小时,尺寸效应越明显;扶手型MoS_(2)的破坏应力和应变较锯齿型MoS_(2)更大,力学性能更好.
In order to solve the problem of large computation by first principles and molecular dynamics when studying the mechanical properties of molybdenum disulfide(MoS_(2)).A finite element method was proposed to establish the equivalent relationship between atomic potential energy and strain energy of beams,according to structural mechanics theory.Moreover,the covalent bond of MoS_(2) was considered equivalent to the beam with circular section.On this basis,the mechanical properties of monolayer MoS_(2) under uniaxial compression were investigated through linear and nonlinear constitutive relations.The simulation results demonstrate that the results accuracy can meet the calculation requirements,and the elastic modulus of zigzag and armchair MoS_(2) decreases with the increasing size,the smaller the size,the more pronounced the size effect.With better mechanical properties,the armchair MoS_(2) has greater failure stress and strain compared to its zigzag counterpart.
作者
杨璐
齐博
杨宏旭
王天韵
YANG Lu;QI Bo;YANG Hong-xu;WANG Tian-yun(School of Architecture and Civil Engineering,Shenyang University of Technology,Shenyang 110870,China)
出处
《沈阳工业大学学报》
CAS
北大核心
2023年第3期348-353,共6页
Journal of Shenyang University of Technology
基金
国家自然科学基金项目(11102118)。
关键词
二硫化钼
有限元法
圆形截面梁
线性本构关系
非线性本构关系
弹性模量
破坏应力
破坏应变
molybdenum disulfide
finite element method
cross-section of the circle beam
linear constitutive relation
nonlinear constitutive relation
elastic modulus
failure stress
failure strain