期刊文献+

750℃下镍基气阀合金α-Cr相演变行为

Evolution ofα-Cr Phase in Ni-based Alloy as Exhaust Valve at 750℃
下载PDF
导出
摘要 通过力学性能实验,金相显微镜和扫描电镜观察显微组织和腐蚀形貌,研究了新型Ni-Cr-Fe镍基合金经热处理后750℃长期时效过程中的力学性能和微观组织行为。结果表明:该合金在750℃长期时效过程中,合金内部析出条状的bcc a-Cr相,并随着保温时间的增加而显著增加。少量α-Cr相析出对合金室温力学性能的影响并不明显。保温2000h后合金的室温塑韧性明显降低,出现韧性/脆性转变。晶界附近体心结构的α-Cr相大量析出是合金的室温塑韧性下降的主要原因,裂纹及二次裂纹易沿α-Cr相扩展。 Through mechanical property experiments,metallographic microscopy and scanning electron microscopy to observe the microstructure and corrosion morphology,the mechanical properties and microstructure behavior of the new Ni-Cr-Fe nickel-based alloy during long-term heat preservation at 750℃after heat treatment were studied.The results show that during the long-term insulation process of the alloy at 750℃,strip-shaped BCC A-Cr phase is precipitated inside the alloy,and it increases significantly with the increase of the holding time.The effect of a small amount ofα-Cr phase precipitation on the mechanical properties of alloy at room temperature is not obvious.After 2000 h of heat preservation,the plastic toughness of the alloy at room temperature is significantly reduced,and the toughness/brittleness transformation occurs.The large number of precipitation of theα-Cr phase of the body center structure near the grain boundary is the main reason for the decrease of the plastic toughness of the alloy at room temperature,and cracks and secondary cracks are easy to propagate along theα-Cr phase.
作者 涂玉国 王华 杨连金 赵衡 薛卫兵 陆吕凯 Tu Yuguo;Wang Hua;Yang Lianjin;Zhao Heng;Xue Weibing;Lu Lvkai(Jiangsu Shenyuan Group Co.,Ltd.,Jiangsu,225722)
出处 《当代化工研究》 2023年第9期42-44,共3页 Modern Chemical Research
关键词 镍基高温合金 时效处理 塑性 Α-CR相 nickel-based high-temperature alloys aging treatment plasticity α-Cr phase
  • 相关文献

参考文献7

二级参考文献24

  • 1[1]Alloy Digest, Ni-350[Z]. Orange, NJ: Alloy Digest, Inc, 1987. 7.
  • 2[2]Sims S T, Stoloff N S, Hagel W C. Superalloys Ⅱ[M]. New York: A Wiley-Interscience Publication, 1987. 590.
  • 3[3]Zhao J C, Ravikumar V, Beltran A M. Phase precipitation and phase stability in Nimonic 263 [J]. Metallurgical and Materials Transactions A, 2001, 32A: 1271-1282.
  • 4[4]Blum R. Preliminary considerations for the design of a pulverized coal fired steam boiler with ultra super advanced steam parameters[R]. Advanced (700℃) PF Power Plant, EC Contract No.SF/1001/97/DK(1997).
  • 5[5]Smith G D, Patel S J, Farr N C, et al. The corrosion resistance of nickel-containing alloys in coal-fired boiler environments [A]. Corrosion 99 [C]. Houston: NACE International, 1999. 12.
  • 6[6]Smith G D, Sizek H W. Introduction of an advanced superheater alloy for coal-fired boilers [A]. Corrosion 2000 [C]. Houston: NACE International, 2000: 00256.1.
  • 7[7]Castello P, Guttmann V, Farr N, et al. Laboratory-simulated fuel-ash corrosion of superheater tubes in coal-fired ultra-supercritical-boilers [J]. Materials and Corrosion, 2000, 51: 786-790.
  • 8[8]Xie X, Liu Z, Zhao S, et al. Thermal stability of high temperature corrosion resistant nickel-base superalloy [A]. Hanada S, Zhong Z, Nam S W, et al. The fourth Pacific Rim International Conference on Advanced Materials and Processing (PRICM4) [C]. Sendai: The Japan Institute of Metals, 2001. 2747-2750.
  • 9[10]Sundman B, Jansson B, Anderson J O. The thermo-calc databank system [J]. CALPHAD, 1985, 9(2): 153-190.
  • 10Radavich J F. Superalloys 718, 625 and Various Derivatives[M]. Philadelphia: TMS, 1997:409

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部