期刊文献+

基于多尺度样本扩增的高光谱影像半监督分类

Semi-Supervised Classification of Hyperspectral Images Based on Multi-Scale Sample Amplification
下载PDF
导出
摘要 大量的训练样本可有效缓解模型过拟合,从而提高分类效果。在初始标记样本较少的情况下,开展借助不同尺度的同质区快速扩增大量高精度训练样本的实验,并利用初始标记样本和扩增样本训练支持向量机(Support Vector Machine,SVM)分类器,实现对高光谱数据的有效分类。该方法在Pavia Uni-versity、Salinas和Indian Pines三种高光谱数据上均能获得大量高精度的训练样本,分类精度分别达到99%、99%和97%以上。实验结果表明,扩增的大量伪标签样本可以有效训练SVM分类器,提高分类效果。 A large number of training samples can effectively alleviate the overfitting of the model and improve the classification effect.A lot of high-precision training samples are rapidly amplified by using homogenous regions of different scales.The support vector machine classifier is trained with the initial la-beled samples and amplified samples to achieve the effective classification of hyperspectral data.The ma-jority of high-precision training samples based on Pavia University data,Salinas data and Indian Pines da-ta can be obtained by this method,and the accuracy is above 99%,99%and 97%respectively.The experi-ment results show that the large number of pseudo-label samples amplified by the proposed method can ef-fectively train the SVM classifier and improve the classification effect.
作者 刘丽丽 杨春蕾 顾明剑 胡勇 LIU Li-li;YANG Chun-lei;GU Ming-jian;HU Yong(Suzhou Academy,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Suzhou 215000,China;Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China;Key Laboratory of Infrared Detection and Imaging Technology,Chinese Academy of Sciences,Shanghai 200083,China)
出处 《红外》 CAS 2023年第5期32-45,共14页 Infrared
关键词 高光谱影像 半监督分类 多尺度同质区 训练样本扩增 图像分割 支持向量机 hyperspectral image semi-supervised classification multi-scale homogeneous regions train-ing sample amplification image segmentation SVM
  • 相关文献

参考文献4

二级参考文献23

  • 1BAATZ M,SCH(A)PE A. Object-oriented and multi-scale image analysis in semantic networks[A].1999.
  • 2LANTU EJOUL C. La Squelettisatoin et Son Application aux Mesures Topologiques des Mosaiques Polycristalines[D].School of Minews,1978.
  • 3VINCENT L,SOILL E P. Watersheds in Digital Spaces:An efficient Algorithm Based on Immersion Simulations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,(06):583-598.doi:10.1109/34.87344.
  • 4BEUCHER S. Segmentation d' Images et Morphologie Mathematique[D].Paris:School of Mines,1990.
  • 5JACKWAY P. Gradient watersheds in morphological scalespace[J].IEEE Transactions on Image Processing,1996,(06):913-921.
  • 6O' CALLAGHAN R J,BULL D R. Combined morphological-spectral unsupervised image segmentation[J].IEEE Transactions on Image Processing,2005,(01):49-62.
  • 7Canny J F. A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,(06):679-698.
  • 8Roberts L G. Machine Perception of Three Dimensional Solids[A].Cambridge,1965.159-197.
  • 9Sobel I. Neighborhood coding of binary images for fast contour following and general binary array? processing[J].Computer Vision Graphics and Image Processing,1978.127-135.
  • 10MORRONE M C,ROSS J,BURR D C. Mach Bands Are Phase Dependent[J].Nature,1986.250-253.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部