期刊文献+

基于提示学习与T5 PEGASUS的图书宣传自动摘要生成器 被引量:6

Automated Book Summary Generator Based on Prompt Learning and T5 PEGASUS
原文传递
导出
摘要 【目的】从图书信息中快速生成书籍的宣传语。【方法】基于提示学习的思想将爬取的图书信息构造为数据集,使用数据增强、关键词抽取增加信息,最后输入T5 PEGASUS得到基础宣传语。当书评数量达到阈值时加入书评的摘要。【结果】本文模型在数据集上的 Rouge-1、Rouge-2、Rouge-L相较于最优的基线模型分别提升29.0%、37.6%、31.9%,加入书评的摘要能体现用户的兴趣点。【结论】根据图书语料特点设计的实验流程所生成的宣传语具有实际应用价值。 [Objective]This paper aims to quickly generate real-time promotional book summaries and reduce the consumption of workforce and resources.[Methods]First,we constructed a dataset with the crawled book information based on prompt learning.Then,we used data enhancement and keyword extraction to increase information and generated the primary promotion language with the T5 PEGASUS.When the number of book reviews reaches the threshold,the summary of the book reviews will also be added.[Results]Compared with the optimal baseline model,the Rouge-1、Rouge-2、and Rouge-L scores of the proposed model were improved by 29.0%,37.6%,and 31.9%,respectively.Adding the summary of book reviews can reflect the interests of users.[Conclusions]The proposed model could generate summaries based on the characteristics of the book corpus and has practical value.
作者 李岱峰 林凯欣 李栩婷 Li Daifeng;Lin Kaixin;Li Xuting(School of Information Management,Sun Yat-Sen University,Guangzhou 510006,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2023年第3期121-130,共10页 Data Analysis and Knowledge Discovery
基金 广东省科技创新战略专项资金(“攀登计划”专项资金)(项目编号:pdjh2021a0001)的研究成果之一。
关键词 文本摘要 提示学习 数据增强 TextRank T5 PEGASUS Text Summarization Prompt Learning Data Enhancement TextRank T5 PEGASUS
  • 相关文献

参考文献13

二级参考文献101

  • 1黄波,刘传才.基于加权TextRank的中文自动文本摘要[J].计算机应用研究,2020,37(2):407-410. 被引量:21
  • 2陈基漓,牛秦洲.基于特征码的网页去重[J].微计算机信息,2006,22(03X):113-115. 被引量:11
  • 3Grosch M. Library services in the media environment:A students' perspective[ J]. New Library World, 2012,113 ( 9/10 ) : 474 - 490.
  • 4Kho N. D. Social media in libraries keys to deeper engagement [ J ] Information Today,2011,28(6) : 1,31 -32.
  • 5Goldstein J, Kantrowitz M, Mittal V, et al. Summarizing text documents: sentence selection and evaluation metrics[C]//Pro- ceedings of the 22nd Annual International ACM SIGIR Confe- rence on Research and Development in Information Retrieval. Berkeley, 1999 : 121-128.
  • 6Radev D R, Jing H, Sty M. Centroid - based summarization of multiple documents [J]. Information Processing and Manage- ment,2004,40(6) :919-938.
  • 7Canhasi E,Kononenko I. Multi-document summarization via Ar- chetypal Analysis of the content-graph joint model[J]. Know- ledge and Information Systems,2014,41(3)..821-842.
  • 8Cai Xiao-yan, Li Wen-jie. Mutually reinforced manifold ranking based relevance propagation model for query-focused multi-do cument summarization [ J]. IEEE Transactions on Audio, Speech, and I.anguage Proeessing, 2012,20 ( 5 ) : 1597-1607.
  • 9Ferreira R, de Souza Cabral L, Freitas F, et al. A multi-document summarization system based on statistics and linguistic treat- ment[J]. Expert Systems with Applications, 2014, 41 ( 13 ) : 5780-5787.
  • 10Xu Yong-dong, Zhang Xiao-dong, Quan Guang-ri, et al. MRS for multi-document summarization by sentence extraction[J]. Tele- communication Systems, 2013,53 ( 1 ) : 91-98.

同被引文献52

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部