期刊文献+

基于生物信息学筛选肝细胞癌预后生物标志物

Screening of prognostic biomarkers of hepatocellular carcinoma based on bioinformatics
原文传递
导出
摘要 目的 通过生物信息学筛选出肝细胞癌(HCC)与正常组织的差异表达基因(DEGs),探索HCC预后生物标志物。方法 从公共基因数据库(GEO)筛选并下载3个微阵列数据集GSE101685、GSE84402和GSE62232,通过GEO2R在线分析平台对得到的基因芯片进行分析,可以得到癌组织与非癌组织的DEGs,利用DAVID数据库进行基因本体论(GO)功能富集分析及京都基因与基因组百科全书(KEGG)通路富集分析,应用STRING绘制出蛋白-蛋白相互作用(PPI)网络,导入Cytoscape软件用CytoHubba插件筛选出排名前10位的核心基因,通过Kaplan-Meier Plotter对每个核心基因进行生存分析,并绘制生存曲线,再通过GEPIA数据库进行表达量分析,进一步分析核心基因所涉及的信号通路。结果 数据集GSE101685、GSE84402、GSE62232分别筛选出459、471和292个DEGs。Venn图显示GSE101685、GSE84402和GSE62232数据集共同表达的DEGs有169个,其中上调DEGs 43个,下调DEGs 126个,通过上述相应分析,筛选出10个核心基因DLGAP5、BIRC5、CCNB1、CCNA2、TTK、NDC80、NCAPG、MAD2L1、BUB1B和RRM2。将10个核心基因通过Kaplan-Meier Plotter进行预后分析后,发现10个核心基因的过表达均会导致总体生存率的下降。将10个核心基因通过GEPIA数据库进行表达量分析,发现9个核心基因(DLGAP5、BIRC5、CCNB1、CCNA2、NDC80、NCAPG、MAD2L1、BUB1B、RRM2)表达差异有统计学意义,均P<0.05。其中核心基因BUB1B、CCNA2、CCNB1、MAD2L1和RRM2主要富集在p53信号通路和细胞周期。结论 BUB1B、CCNA2、CCNB1、MAD2L1和RRM2的过表达与HCC的不良生存率相关,可能成为HCC的预后生物标志物,可为HCC患者的治疗提供理论基础,DLGAP5、BIRC5、NDC80和NCAPG在HCC预后评估等方面值得继续探索。 Objective To screen the differentially expressed genes(DEGs) between hepatocellular carcinoma(HCC) and normal tissues by bioinformatics, and to explore prognostic biomarkers of HCC.Methods Three microarray datasets GSE101685, GSE84402, and GSE62232 were screened and downloaded from gene expression omnibus(GEO)database. DEGs of cancer and non-cancer tissues could be obtained by analyzing the obtained gene chips through online analysis platform GEO2R. Gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis were performed using the database for annotation, visualization, and integrated discovery(DAVID) database, the protein-protein interaction(PPI) network was mapped using STRING. Cytoscape software was imported to screen out the top 10 core genes by CytoHubba plug-in. Kaplan-Meier Plotte was used to analyze the survival of each core gene, and the survival curve was drawn. The GEPIA database was used for expression analysis to further analyze the signaling pathways involved in the core genes.Results A total of 459, 471 and 292 DEGs were screened from GSE101685,GSE84402and GSE62232data sets,respectively.Venn diagram showed that 169DEGs were co-expressed in the GSE101685,GSE84402and GSE62232data sets,among which 43DEGs were up-regulated and 126DEGs were down-regulated.Through the corresponding analysis above,10core genes(DLGAP5,BIRC5,CCNB1,CCNA2,TTK,NDC80,NCAPG,MAD2L1,BUB1B,RRM2)were screened out.Kaplan-Meier Plotte was used to analyze the prognosis of 10core genes,and it was found that the overexpression of 10core genes would lead to the decrease of overall survival rate.The expression levels of 10core genes were analyzed by GEPIA database,and the expression levels of 9core genes(DLGAP5,BIRC5,CCNB1,CCNA2,NDC80,NCAPG,MAD2L1,BUB1B,RRM2)were statistically significant(all P<0.05).The core genes BUB1B,CCNA2,CCNB1,MAD2L1and RRM2were mainly enriched in p53signaling pathway and cell cycle.Conclusions The overexpression of BUB1B,CCNA2,CCNB1,MAD2L1and RRM2is associated with poor survival rate of HCC,which may be a prognostic biomarker for HCC,and can provide a theoretical basis for the treatment of HCC patients.DLGAP5,BIRC5,NDC80and NCAPGare worthy of further exploration in the prognosis evaluation of HCC.
作者 武硕 贾友鹏 WU Shuo;JIA Youpeng(Department of Hepatobiliary Surgery,Dalian Central Hospital,Dalian 116000,China;Graduate School of Dalian Medical University,Dalian 116000,China)
出处 《社区医学杂志》 CAS 2023年第7期340-350,共11页 Journal Of Community Medicine
关键词 肝细胞癌 生物信息分析 差异基因 蛋白-蛋白相互作用网络 hepatocellular carcinoma biological information analysis differential gene protein-protein interaction network
  • 相关文献

参考文献8

二级参考文献30

  • 1陈芹,周彩存,张颉.ERCC1、RRM1和BRCA1在非小细胞肺癌中的表达及预后意义[J].肿瘤,2007,27(9):719-722. 被引量:57
  • 2ShaoJ,Liu X,Zhu L,etal.Targeting ribonucleotide reductase for cancer therapy[J].Expert Opin Ther Targets,2013,17(12):1423-1437.
  • 3Wang X,Zhenchuk A,Wiman KG,et al.Regulation of p53R2 and its role as potential target for cancer therapy[J].Cancer Lett,2009,276(1):1-7.
  • 4Tian H,Ge C,Li H,et al.Ribonucleotide reductase M2B inhibits cell migration and spreading by early growth response protein 1-mediated phosphatase and tensin homolog/Akt1 pathwayin hepatocellular carcinoma[J].Hepatology,2014,59(4):1459-1470.
  • 5Gautam A,Li ZR,Bepler G.RRM1-induced metastasis suppression through PTEN-regulated pathways[J].Oncogene,2003,22(14):2135-2142.
  • 6Bepler G,Sharma S,Cantor A,et al.RRM1 and PTEN as prognostic parameters for overall and disease-free survival in patients with non-small-cell lung cancer[J].J Clin Oncol,2004,22(10):1878-1885.
  • 7Morikawa T,Hino R,Uozaki H,et al.Expression of ribonucleotide reductase M2 subunit in gastric cancer and effects of RRM2 inhibition in vitro[J].Hum Pathol,2010,41(12):1742-1748.
  • 8Liu X,Zhou B,Xue L,et al.Ribonucleotide reductase subunits M2 and p53R2 are potential biomarkers for metastasis of colon cancer[J].Clin Colorectal Cancer,2007,6(5):374-381.
  • 9Kolesar J,Huang W,Eickhoff J,et al.Evaluation of mRNA by Q-RTPCR and protein expression by AQUA of the M2 subunit of ribonucleotide reductase(RRM2)in human tumors[J].Cancer Chemother Pharmacol,2009,64(1):79-86.
  • 10Okumura H,Natsugoe S,Yokomakura N,etal.Expression of p53R2 is related to prognosis in patients with esophageal squamous cell carcinoma[J].Clin Cancer Res,2006,12(12):3740-3745.

共引文献396

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部