期刊文献+

Resonant interactions among two-dimensional nonlinear localized waves and lump molecules for the(2+1)-dimensional elliptic Toda equation

原文传递
导出
摘要 The(2+1)-dimensional elliptic Toda equation is a high-dimensional generalization of the Toda lattice and a semidiscrete Kadomtsev–Petviashvili I equation.This paper focuses on investigating the resonant interactions between two breathers,a breather/lump and line solitons as well as lump molecules for the(2+1)-dimensional elliptic Toda equation.Based on the N-soliton solution,we obtain the hybrid solutions consisting of line solitons,breathers and lumps.Through the asymptotic analysis of these hybrid solutions,we derive the phase shifts of the breather,lump and line solitons before and after the interaction between a breather/lump and line solitons.By making the phase shifts infinite,we obtain the resonant solution of two breathers and the resonant solutions of a breather/lump and line solitons.Through the asymptotic analysis of these resonant solutions,we demonstrate that the resonant interactions exhibit the fusion,fission,time-localized breather and rogue lump phenomena.Utilizing the velocity resonance method,we obtain lump–soliton,lump–breather,lump–soliton–breather and lump–breather–breather molecules.The above works have not been reported in the(2+1)-dimensional discrete nonlinear wave equations.
作者 庞福忠 葛根哈斯 赵雪梅 Fuzhong Pang;Hasi Gegen;Xuemei Zhao(School of Mathematical Science,Inner Mongolia University,Hohhot 010021,China)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期200-217,共18页 中国物理B(英文版)
基金 the National Natural Science Foundation of China(Grant Nos.12061051 and 11965014)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部