期刊文献+

Vi-RNN算法储能电池在线SOC估计 被引量:4

Online SOC estimation of energy storage lithium battery based on Vi-RNN algorithm
下载PDF
导出
摘要 锂离子电池的荷电状态(state of charge,SOC)估计是电池管理系统的重要组成部分。更加精确的SOC估计结果,有利于储能电站的并网和控制。该文提出一种基于Vi-RNN的储能电池SOC估计算法,该算法将储能电池端口电压和电压增量作为输入,荷电状态作为输出,RNN算法作为框架,实现在线更高精度的SOC估计。采用储能锂离子电池在0.2C和0.3C充放过程中的测量数据进行仿真分析。结果显示:相较于MEA-BP算法,该方法估计结果的均方误差和相对误差更低,均方误差降低约20%。 State of charge(SOC)estimation of lithium-ion battery is an important part of battery management system.More accurate SOC estimation results are conducive to the grid connection control of energy storage power station.In this paper,an energy storage battery SOC estimation algorithm based on Vi-RNN was proposed.The energy storage battery port voltage and voltage increment were taken as the input,and SOC estimation result was taken as the output,and the RNN neural network algorithm was used as the framework to realize the high-precision SOC estimation.In this paper,the measured data of energy storage lithium-ion battery during charging and discharging at 0.2C and 0.3C were used for simulation analysis.The results show that,compared with MEA-BP,the mean square error and relative error of our method are lower,and the mean square error is reduced by about 20%.
作者 文茹馨 刘惠颖 梁言贺 汪江昭 林文娟 王宗晶 李琦 WEN Ruxin;LIU Huiying;LIANG Yanhe;WANG Jiangzhao;LIN Wenjuan;WANG Zongjing;LI Qi(State Grid Heilongjiang Power Supply Service Management Center,Harbin 150070 China;College of Electrical and Information Engineering,Hunan University,Changsha 410082,China)
出处 《中国测试》 CAS 北大核心 2023年第5期117-122,共6页 China Measurement & Test
关键词 锂电池 荷电状态 循环神经网络 电压增量 均方误差 相对误差 lithium battery state of charge recurrent neural network voltage increment mean square error relative error
  • 相关文献

参考文献13

二级参考文献119

共引文献332

同被引文献43

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部