摘要
以四唑为母体结构单元,引入多种高能取代基和桥连基团进行修饰,设计了A~E五类35种新型双环四唑含能化合物。运用密度泛函理论在B3LYP/6-311G(d,p)基组水平上,计算分析了所设计的35种化合物的电子特性及爆轰性能,并与HMX等炸药的爆轰参数进行了比较。结果表明,所设计的5类含能化合物密度范围为1.5559~2.0510 g/cm^(3),生成焓范围为490.79~1607.39 kJ/mol,爆速范围为7590~10110 m/s,爆压范围为23.34~48.44 GPa。当取代基团为硝基、硝胺基和三硝基甲基,桥连基团为-N(NO_(2))-CH_(2)-N(NO_(2))-、-N N(O)-和-N N-时,化合物密度为1.90~2.0510 g/cm^(3),爆速为9000~10110 m/s,生成焓为916~1607 kJ/mol,能隙值为1.45~5.62 eV,是具有优异性能的高能量高密度的潜在含能化合物。
By using tetrazole as the parent structural unit,five new groups of bicyclic tetrazolium-containing compounds(A-E)were designed by introducing a variety of high-energy and bridging groups.The electronic properties and detonation performances of the 35 designed compounds were calculated and analyzed using the density functional theory method at B3LYP/6-311G(d,p)level,and their detonation parameters were compared with those of HMX and other explosives.The results show that the densities of the five kinds of designed compounds are 1.5559-2.0510 g/cm^( 3),the heat of formation are 490.79-1607.39 kJ/mol,the detonation velocities are 7590-10110 m/s,and the detonation pressures are 23.34-48.44 GPa.When the substituent groups are nitro,nitroamino and trinitro-methyl,the bridging groups are-N(NO_(2))-CH_(2)-N(NO_(2))-,-N N(O)-and-N N-,the densities of these compounds are 1.90-2.0510 g/cm^(3),the detonation velocities are 9000-10110 m/s,the heat of formation(HOFs)are 916-1607 kJ/mol,and the energy gap values are 1.45-5.62 eV,indicating that they are potential energetic compound candidates with high energy density and excellent performance.
作者
张明敏
蒋帅杰
张立南
朱咪咪
秦凯毅
林秋汉
ZHANG Ming-min;JIANG Shuai-jie;ZHANG Li-nan;ZHU Mi-mi;QIN Kai-yi;LIN Qiu-han(School of Chemistry and Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处
《火炸药学报》
EI
CAS
CSCD
北大核心
2023年第5期436-440,I0012,共6页
Chinese Journal of Explosives & Propellants
基金
国家自然科学基金(No.21805138)。
关键词
量子化学
含能化合物
高能量密度材料
四唑
分子设计
密度泛函理论
DFT
quantum chemistry
energetic compound
high energy density materials
tetrazolium
molecular design
density functional theory
DFT