期刊文献+

全氟己酮与惰性气体对甲烷爆炸的协同阻爆作用 被引量:1

Prevention effect of the synergistic of C_6F_(12)O and inert gas on methane explosion
原文传递
导出
摘要 为探究全氟己酮及其与CO_(2)、N_(2)协同下的抑爆能力,通过改变全氟己酮用量和CO_(2)、N_(2)的压力来观测其对甲烷爆炸传播特性的影响。结果表明:在试验条件下,单喷CO_(2)和N_(2)不能实现对甲烷的完全抑爆;而单喷全氟己酮能实现对甲烷的完全抑爆;全氟己酮与CO_(2)或N2混合喷出有利于全氟己酮完全汽化、提升其抑爆能力;与N_(2)混合,抑爆所需的全氟己酮最小量由23 mL下降到17 mL,与CO_(2)混合,阻爆所需全氟己酮最小量从23 mL下降到5 mL,全氟己酮与CO_(2)混合使用的抑爆能力强于全氟己酮与N2混合使用的抑爆能力。全氟己酮/CO_(2)的协同抑制机理在于全氟己酮产生的自由基F会优先替代氧气产生的O参与基元反应,CO_(2)作为第3体参与反应会优先阻断OH的放热反应,二者具有良好的协同互补关系,从而更好地抑制和阻断甲烷/空气链式反应。 To investigate the suppression ability of C_(6)F_(12)O and inert gas, the effects of C_(6)F_(12)O dosage and CO_(2), N_(2) pressure on the flame propagation of gas explosion are observed. The results show that the methane explosion can not be completely suppressed by the sole spray of CO_(2) or N_(2) under experimental conditions. By the sole spray of C_(6)F_(12)O, the methane explosion can be completely suppressed and the flame propagation can be prevented. The suppression ability of C_(6)F_(12)O is stronger than that of CO_(2) and N_(2). The mixing spray of C_(6)F_(12)O/CO_(2) or C_(6)F_(12)O/N_(2) is conducive to C_(6)F_(12)O vaporizing completely and improving its suppression ability. In mixing spray of C_(6)F_(12)O/CO_(2) or C_(6)F_(12)O/N_(2), the flow speed becomes faster with the increase of CO_(2) or N_(2) pressure, which will accelerate the deformation, fragmentation and atomization of C_(6)F_(12)O droplets in the flow field. It is conducive to the rapid vaporization of C_(6)F_(12)O and rapid absorption of a large amount of heat. The explosion is suppressed by gas state C_(6)F_(12)O more efficiently than by mist state C_(6)F_(12)O in experiments. When mixed with N_(2), the minimum amount of C_(6)F_(12)O required to prevent the explosion decreased from 23mL to 17mL, with a maximum decrease of 26.1%. When mixed with CO_(2), the minimum amount of C_(6)F_(12)O required to prevent the explosion decreases from 23mL to 5mL, with a maximum decrease of 78.3%. The mixing spray of C_(6)F_(12)O/CO_(2) shows a stronger inhibition ability than that of C_(6)F_(12)O/N_(2). The physical inhibition mechanism of C_(6)F_(12)O/CO_(2) includes the dilution effect and the heat absorption by vaporization. The chemical inhibition mechanism of C_(6)F_(12)O is that the free radical F produced by C_(6)F_(12)O will react with the fuel radical before the radical O is produced by oxygen. The oxidation chain reaction is inhibited. CO_(2), as a third body, preferentially blocks the exothermic reaction of radical OH. Therefore, C_(6)F_(12)O and CO_(2)have a good synergistic and complementary relationship in inhibiting and blocking the methane/air chain reaction.
作者 路长 苏振国 陈硕 孟琪 班成伟 段征 刘金刚 余明高 LU Chang;SU Zhen-guo;CHEN Shuo;MENG Qi;BAN Cheng-wei;DUAN Zheng;LIU Jin-gang;YU Ming-gao(State Collaborative Innovation Center of Coal Work Safety and Clean-High Efficiency Utilization,Henan Polytechnic University,Jiaozuo 454003,Henan,China;State Key Laboratory Cultivation Bases for Gas Geology and Gas Control,Henan Polytechnic University,Jiaozuo 454003,Henan,China;State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,Chongqing 400044,China)
出处 《安全与环境学报》 CAS CSCD 北大核心 2023年第4期1115-1123,共9页 Journal of Safety and Environment
基金 国家自然科学基金项目(51974107,51774059)。
关键词 安全工程 甲烷 全氟己酮 二氧化碳 阻爆 抑爆机理 safety engineering methane C_(6)F_(12)O carbon dioxide explosion prevention explosion suppression mechanism
  • 相关文献

参考文献8

二级参考文献78

  • 1叶青,林柏泉,菅从光,贾真真.磁场对瓦斯爆炸及其传播的影响[J].爆炸与冲击,2011,31(2):153-157. 被引量:7
  • 2贾宝山,温海燕,梁运涛,王小云.煤矿巷道内N_2及CO_2抑制瓦斯爆炸的机理特性[J].煤炭学报,2013,38(3):361-366. 被引量:36
  • 3李亚峰,胡筱敏,刘佳,张玲玲.新型气体灭火剂七氟丙烷的性能及其应用[J].工业安全与环保,2005,31(2):39-40. 被引量:17
  • 4Coward H. F., and Jones G. W., “Limits of flammability of gases and vapors,” US Bureau of Mines, Bulletin No. 503, 1952.
  • 5DIN 51649, Teil 1, “Bestimmung der Explosionsgrenzen von Gases und Gasgemischen in Luft,” Deutsches Institut fur Norrnung, Berlin, 1986.
  • 6ASHRAE Standard 34, “Number designation and safety classification of refrigerants,” American Society of Heating Refrigerating and Air-conditioning Engineers, Atlanta, Georgia, 1989.
  • 7ASTM E681, “Standard test method or concentration limits of flammability of chemicals,” American Society for Testing and Materials, Philadelphia, 1994.
  • 8prEN1839, “Determination of explosion limits of gases vapours and their mixtures,” European Standard, 1995.
  • 9Takahashi A., Urano Y., Tokuhashi K., Nagai H., Kaise M., and Kondo S., “Fusing ignition of various metal wires for explosion limits measurement of methane/air mixture”, Journal of Loss Prevention in the Process In- dustries, vol. 11, 1998, pp. 353-360.
  • 10Takahashi A., Urano Y., Tokuhashi K., and Kondo S., “Effect of vessel size and shape on experimental flammability limits of gases,” Journal of Hazardous Materials, vol. 105, 2003, pp. 27-37.

共引文献42

同被引文献24

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部