摘要
More and more researchers start to pay attention to the electrocaloric temperature change(DT)in polar materials,which is caused by an applied electric field.In this paper,Ba-doped PbHfO_(3)(PBH)films were prepared by sol-gel method.Their components,microstructures,dielectric polarization and electro-caloric effects(ECEs)were investigated.With the addition of Ba^(2+),PBH films went from antiferroelectric(AFE)to ferroelectric(FE).At the same time,their dielectric peaks shifted toward lower temperature.The maximum DT obtained in Pb_(0.8)Ba_(0.2)HfO_(3)FE film is 41.1 K,which is an order of magnitude larger than PbHfO_(3)film(△T<4 K at 50℃)and Pb_(0.9)Ba_(0.1)HfO_(3)film(△T<4 K at 120℃).In order to explain this phenomenon,the Landau-Devonshire theory was adopted.Our analysis shows that the rapid variation of energy barrier height near the phase transition temperature is beneficial to obtain large polarization change and high△T,which is needed in solid-state cooling devices.
基金
supported by the National Natural Science Foundation of China(Grant Nos.11574057,12172093,11904056)
the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607)
Guangdong University Research Platform and Research Project in 2022(Grant No.2022KQNCX216)
the China Postdoctoral Science Foundation(Grant No.2022T150158).