摘要
为研究水平荷载作用下冷弯薄壁型钢剪力墙的失效机制和设计方法,对6片冷弯薄壁型钢剪力墙的足尺试件进行低周反复加载试验,分析了墙体高宽比、墙面蒙皮板配置和边龙骨配置对剪力墙的破坏机理、抗侧刚度、承载力、滞回性能和延性性能的影响.试验结果表明,冷弯薄壁型钢剪力墙在水平荷载作用下的破坏模式可分为剪切破坏和弯曲破坏2类.墙体高宽比、抗剪能力与抗弯能力的强弱配置关系是影响墙体破坏机制的2个重要因素.冷弯薄壁型钢剪力墙的抗侧刚度和承载力能力随着边龙骨配置的增强而增大,随着高宽比的增大而减小.针对抗震性能等级为性能Ⅲ和性能Ⅳ的冷弯薄壁型钢剪力墙,建议进行强弯弱剪设计,放大系数取1.1,以确保剪力墙在地震作用下具备良好的延性.
To study the failure mechanism and design method of cold-formed thin-walled steel shear walls under horizontal loads,six full scale specimens of cold-formed thin-walled steel shear walls were tested with cyclic horizontal loads.The effects of the aspect ratio,configurations of sheathings and chord studs on failure mechanism,lateral stiffness,bearing capacity,hysteretic behavior and ductility were investigated.The experimental results show that the failure modes of cold-formed thin-walled steel shear walls under horizontal loads can be divided into two types,shear failure and bending failure.Two important factors affecting failure mechanism of shear walls are the aspect ratio of walls as well as the strong and weak configuration relationship between shear capacity and bending capacity.The lateral stiffness and bearing capacity of cold-formed thin-walled steel shear walls increase with the enhancement of the chord stud configuration,but decrease with the increase of the aspect ratio.In order to ensure the good ductility of shear walls under earthquakes,the design procedures of strong bending and weak shear as well as the amplification factor of 1.1 are recommended for cold-formed thin-walled steel shear walls with seismic performance GradeⅢand GradeⅣ.
作者
吴函恒
隋璐
李展
陈腾飞
周天华
Wu Hanheng;Sui Lu;Li Zhan;Chen Tengfei;Zhou Tianhua(School of Civil Engineering,Chang’an University,Xi’an 710061,China)
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2023年第3期445-454,共10页
Journal of Southeast University:Natural Science Edition
基金
国家自然科学基金资助项目(51508029,51878055)
中央高校基本科研业务费专项资金资助项目(300102282204,300102282718).
关键词
冷弯薄壁型钢
冷弯薄壁型钢剪力墙
失效机制
抗震性能化设计
强弯弱剪
cold-formed thin-walled steel
cold-formed thin-walled steel shear wall
failure mechanism
seismic performance design
strong bending and weak shear