期刊文献+

Hole‑Transport Management Enables 23%‑Efficient and Stable Inverted Perovskite Solar Cells with 84%Fill Factor

下载PDF
导出
摘要 NiO_(x)-based inverted perovskite solar cells(PSCs)havepresented great potential toward low-cost,highly efficient and stablenext-generation photovoltaics.However,the presence of energy-levelmismatch and contact-interface defects between hole-selective contacts(HSCs)and perovskite-active layer(PAL)still limits device efficiencyimprovement.Here,we report a graded configuration based on bothinterface-cascaded structures and p-type molecule-doped compositeswith two-/three-dimensional formamidinium-based triple-halideperovskites.We find that the interface defects-induced non-radiativerecombination presented at HSCs/PAL interfaces is remarkably suppressedbecause of efficient hole extraction and transport.Moreover,astrong chemical interaction,halogen bonding and coordination bondingare found in the molecule-doped perovskite composites,whichsignificantly suppress the formation of halide vacancy and parasitic metallic lead.As a result,NiO_(x)-based inverted PSCs present a power-conversion-efficiency over 23%with a high fill factor of 0.84 and open-circuit voltage of 1.162 V,which are comparable to the best reported around 1.56-electron volt bandgap perovskites.Furthermore,devices with encapsulation present high operational stability over 1,200 h during T_(90) lifetime measurement(the time as a function of PCE decreases to 90%of its initial value)under 1-sun illumination in ambient-air conditions.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期154-166,共13页 纳微快报(英文版)
基金 supported by National Natural Science Foundation of China (62204099) Guangdong Basic and Applied Basic Research Foundation (2020A1515110462) Fundamental Research Funds for the Central Universities (21620347) the Special Funds for College Students’ Innovative Entrepreneurial Training Plan Program
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部