摘要
大数据为岩相古地理研究带来了新的思路和挑战,但由于存在数据类型复杂、语义关系丰富、共享机制不明等问题,难以对岩相古地理数据进行深层次的挖掘分析及有效利用,使得大数据的众多优势在该领域得不到充分发挥。知识图谱强大的语义处理能力与开放互联能力,对于解决大数据中文本分析和图像理解等问题发挥着重要作用,具有广阔的应用前景。文章从岩相古地理知识图谱的构建与应用角度,综述了岩相古地理知识图谱的研究背景;系统归纳了岩相古地理知识图谱的构建思路、技术与流程,同时列举出知识图谱在岩相古地理学方面的相关应用;指出了岩相古地理知识图谱存在的主要问题,并对其未来的研究方向提出了展望。
Big data has brought new ideas and challenges to lithofacies paleogeography research.However,due to the problems of complex data types,rich semantic relationships and unclear sharing mechanisms,it is difficult to conduct in-depth data mining,analysis,and effective utilization of lithofacies paleogeographic data,which makes making many advantages of big data not fully exploited in this field.The powerful semantic processing and open interconnection capabilities of knowledge graphs,make it plays an important role in solving the problems of big data text analysis and image understanding,which and haves broad application prospects.This paper summarizes the research background of lithofacies paleogeography knowledge graphs from the perspective of construction and application;by systematically investigates investigating the construction ideas,technologies and processes of lithofacies paleogeography knowledge graphs.,and The paper also lists outlines the relevant applications of knowledge graphs in lithofacies paleogeography;and points out the main problems of lithofacies paleogeography knowledge graphs,prospects for future research directions.
作者
张佳佳
张蕾
钟瀚霆
王瀚
陈安清
李凤杰
任强
郑栋宇
赵洪祎
侯明才
ZHANG Jiajia;ZHANG Lei;ZHONG Hanting;WANG Han;CHEN Anqing;LI Fengjie;REN Qiang;ZHENG Dongyu;ZHAO Hongyi;HOU Mingcai(Key Laboratory of Deep-time Geography&Environment Reconstruction and Applications of Ministry of Natural Resources,Chengdu University of Technology,Chengdu 610059,China;Institute of Sedimentary Geology of Chengdu University of Technology,Chengdu 610059,China;State key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu University of Technology),Chengdu 610059,China;School of Earth Sciences and Resources,CUGB,Beijing 100083,China)
出处
《高校地质学报》
CAS
CSCD
北大核心
2023年第3期345-358,共14页
Geological Journal of China Universities
基金
国家自然科学基金(42272131,42050104,41888101)联合资助。
关键词
大数据
古地理
岩相古地理
知识图谱
big data
paleogeography
lithofacies paleogeography
knowledge graph