期刊文献+

基于改进RRT-Connect算法的路径规划研究 被引量:3

Research on Path Planning Based on Improved RRT-Connect Algorithm
下载PDF
导出
摘要 传统移动机器人的路径规划算法环境障碍建模复杂且容易陷入局部最小值,而基于采样的快速扩展随机树(RRT)算法通过随机节点快速扩展路径搜索效率低。RRT-Connect算法在RRT算法基础上提升了搜索效率,但存在路径曲折的问题。为此,在RRT-Connect算法基础上通过加入人工势场引导增长方法和目标偏置采样方法,改进算法规划路径的平滑性和速度。为验证改进算法的有效性,与RRT算法、RRT-Connect算法在不同复杂度环境中的执行性能进行比较。仿真实验的结果表明,改进算法在三种不同环境下的路径规划时间和路径规划长度以及标准差稳定性方面均优于其他两种算法。 Traditional path planning algorithms for mobile robots have complex modeling of environmental obstacles and tend to fall into local minima,while the sampling-based rapidly-exploring random tree algorithm is inefficient in searching paths by rapidly exploring random nodes.RRT-Connect algorithm improves the search efficiency on the basis of rapidly-exploring random tree algorithm,but its path is tortuous.In order to solve this problem,the artificial potential field guided growth method and target offset sampling method are added to the RRT-Connect algorithm to improve the smoothness and speed of path planning.To verify the effectiveness of the improved algorithm,it is compared with the performance of RRT algorithm,RRT-Connect algorithm and the improved algorithm in this paper in different complexity environments.The simulation results show that the improved algorithm is superior to the other two algorithms in terms of path planning time,path planning length and standard deviation stability in three different environments.
作者 胡晓阳 赵杰 武炎明 HU Xiaoyang;ZHAO Jie;WU Yanming(Shenyang Ligong University,Shenyang 110159,China;Shenyang Aerospace University,Shenyang 110136,China)
出处 《沈阳理工大学学报》 CAS 2023年第4期26-30,39,共6页 Journal of Shenyang Ligong University
基金 辽宁省博士科研启动基金项目(2020-BS-026)。
关键词 快速扩展随机树算法 RRT-Connect 人工势场法 目标偏置采样 rapidly-exploring random tree algorithm RRT-Connect artificial potential field method target offset sampling
  • 相关文献

参考文献7

二级参考文献96

  • 1于红斌,李孝安.基于栅格法的机器人快速路径规划[J].微电子学与计算机,2005,22(6):98-100. 被引量:63
  • 2[日]棍田秀司.仿人机器人[M].管贻生,等译.北京:清华大学出版社,2007.
  • 3LAVALLE S M, KUFFNER J J, Jr. Rapidly-exploring random trees: progress and prospects [ C}// Proceedings of the 4th International Workshop on the Algorithmic Foundations of Robotics: Algorithmic and Computational Robotics: New Directions. Natick, MA, USA: A. K. Peters, 2000:293-308.
  • 4LAVALLE S M, KUFFNER J. RRT-Connect: an efficient approach to single-query path planning [ C]// Proceedings of the 2000 IEEE International Conference on Robotics & Automation. Piscataway: IEEE, 2000, 4:995 - 1001.
  • 5BRUCE J, VELOSO M. Real-time randomized path planning for ro- bot navigation [ C]// Proceedings of the 2002 IEEE/RS] Interna- tional Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2002:2383 -2388.
  • 6FEGUSON D. Replanning with RRTs [ C]//Proceeding of the 2006 IEEE International Conference on Robotics & Automation. Piseat- away: IEEE, 2006, 5:1243 - 1248.
  • 7ZUCKER M, KUFFNER J J, Jr. Multipartite RRTs for rapid replan- ning in dynamic environments [ C]// Proceeding of the 2007 IEEE International Conference on Robotics & Automation. Piscataway: IEEE, 2007,4:1603 - 1609.
  • 8ZHEN S, DVAID H, JIANG T T, et al. Narrow passage sampling for probabilistic roadmap planning[ J]. IEEE Transactions on Robot- ics, 2005,21(6) : 1105 - 1115.
  • 9JEON J H, KARAMAN S, FRAZZOLI E. Anytime computation of time-optimal off-road vehicle maneuvers using the RRT * [ C]// Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference. Piscataway: IEEE, 2011:3276 - 3282.
  • 10FERGUSON D, STENTZ A. Anytime RRTs [ C]//Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2006:5369-5375.

共引文献141

同被引文献32

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部