期刊文献+

基于XGBoost模型的发电机组瞬态工况的识别

Identification of Generator Operation Modes Based on XGBoost Model
下载PDF
导出
摘要 电厂发电机从开始启动到进入稳态发电会经历多个瞬态工况的变化,利用实时数据在线、自动识别各种瞬态工况,对机组的数字化运维、智能化健康管理等平台具有重要价值和意义。本文提出了一种基于XGBoost机器学习分类算法的发电机组瞬态工况识别方法,通过构建样本高维特征数据集离线训练XGBoost模型,并根据特征重要性筛选建模特征,建立XGBoost在线模型并进行模型验证,最终实现了在线的发电机组瞬态工况识别。与一些常见的机器学习算法相比,XGBoost算法的识别准确率优于其他识别算法,同时与串行运算的传统决策树算法相比,所用时间也大幅缩短。 There are multiple operation modes during the process from startup to steady-state operation of power plant generators.Using online real-time data to automatically identify different operation modes is important and valuable for generator digital operation and maintenance of the units and intelligent health management platforms.This paper proposes a method for identifying operation modes of generators based on XGBoost machine learning classification algorithm.The XGBoost model is trained offline by constructing high-dimensional features of samples,then the modeling features are selected based on the feature importance to establish online model.Model validation is performed,achieving the online identification of operation modes of generators.Compared with some common machine learning algorithms,XGBoost algorithm has better identification accuracy than other recognition algorithms,and the time required is significantly reduced compared to traditional decision tree algorithms.
作者 徐楠 刘培君 XU Nan;LIU Peijun(Advanced Intelligent Manufacturing Systems(Shanghai)Co.,Ltd.,Shanghai 201899,China)
出处 《自动化应用》 2023年第10期105-108,共4页 Automation Application
关键词 发电机 工况识别 机器学习 XGBoost generator work condition recognition machine learning XGBoost
  • 相关文献

参考文献3

二级参考文献44

  • 1康重庆,周安石,王鹏,郑广君,刘一.短期负荷预测中实时气象因素的影响分析及其处理策略[J].电网技术,2006,30(7):5-10. 被引量:101
  • 2王春林,周昊,李国能,岑可法.大型电厂锅炉NO_x排放特性的支持向量机模型[J].浙江大学学报(工学版),2006,40(10):1787-1791. 被引量:16
  • 3蒋东翔 黄乾 洪良友等.风力发电机组振动监测与智能诊断系统开发.振动与冲击,2008,27:113-115.
  • 4Becker E,Poste Pard.Keeping the blades turning:condition monitoring of wind turbine gears[J].Wind Energy,2006,7(2):26-32.
  • 5Hameed Z,Hong Y S,Cho Y M,et al.Condition monitoring and fault detection of wind turbines and related algorithms:A review[J].Renewable and Sustainable Energy Reviews,2009,13(1):1-39.
  • 6Tse Peter,Wang D D.Hybrid neural networks based machine condition forecaster and classifier by using multiple vibration parameters[A].The 1996 IEEE International Conference on Neural Networks[C] ,Washington,DC,USA,1996,2096-2100.
  • 7Vapnik V N.The nature of statistical learning theory[M].Springer-Verlag,1995.
  • 8Achmad Widodo,Bo-Suk Yang.Support vector machine in machine condition monitoring and fault diagnosis[J].Mechanical Systems and Signal Processing,2007,21(6):2560-2574.
  • 9Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 10陈勇强,刘开培.一种基于径向基函数动态阈值模型的机组状态监测方法[J].中国电机工程学报,2007,27(26):96-101. 被引量:6

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部