摘要
在保温领域中,SiO_(2)气凝胶以其突出的性能而备受关注,但有机硅源的制备成本高,限制了其推广和应用。为了降低生产成本,研究人员将目光投向了无机硅源,但无机硅源制备SiO_(2)气凝胶时需要进行繁琐的溶剂置换。为解决溶剂置换的弊端,本文以煤矸石为原料,采用新型的液-液溶剂置换法并联合低温活化法来制备超疏水SiO_(2)气凝胶。研究表明,当活化温度为200℃、矸酸比为1.0∶1.0(固体质量和液体体积之比)、滤渣与NaOH溶液比值为1.0∶1.0(固体质量和液体体积之比)时活化条件最佳,制备的SiO_(2)气凝胶具有独特的三维网络结构、高比表面积(687.7 m^(2)/g)、超疏水性(161.9°)和低密度(0.034 g/cm^(3))。此方法为无机硅源制备SiO_(2)气凝胶提供了新思路,并显著降低了制备SiO_(2)气凝胶的成本。
In the field of thermal insulation,SiO_(2) aerogel has attracted much attention because of its outstanding performance,but the high cost of organosilicon source limits its popularization and application.In order to reduce production cost,researchers have turned their attention to inorganic silicon source,but the preparation of SiO_(2) aerogel using inorganic silicon source requires complicated solvent replacement.To solve the problem of solvent replacement,using coal gangue as raw material,the new type of liquid-liquid solvent displacement method combining with low temperature activation method were adopted to prepare super hydrophobic SiO_(2) aerogel.The results show that when the activation temperature is 200 ℃,the gangue acid ratio is 1.0 ∶1.0(ratio of solid mass to liquid volume),residue and NaOH solution ratio is 1.0 ∶1.0(ratio of solid mass to liquid volume),activation conditions are the best.The prepared SiO_(2) aerogel has unique three-dimensional network structure,high specific surface area(687.7 m~2/g),super hydrophobicity(161.9°) and low density(0.034 g/cm~3).This method provides a new idea for preparing SiO_(2) aerogel from inorganic silicon source and significantly reduces the cost of preparing SiO_(2) aerogel.
作者
刘维海
夏晨康
张鑫源
郝名远
苗洋
高峰
LIU Weihai;XIA Chenkang;ZHANG Xinyuan;HAO Mingyuan;MIAO Yang;GAO Feng(School of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
出处
《硅酸盐通报》
CAS
北大核心
2023年第6期2233-2241,共9页
Bulletin of the Chinese Ceramic Society
基金
山西省重点研发计划(202102030201006)
山西省应用基础研究计划(202103021223055)
山西省回国留学人员科研资助项目。
关键词
SiO_(2)气凝胶
煤矸石
液-液溶剂置换法
低温活化法
表面改性
常压干燥
SiO2 aerogel
coal gangue
liquid-liquid solvent displacement method
low temperature activation method
surface modification
atmospheric drying