期刊文献+

WACPN:A Neural Network for Pneumonia Diagnosis

下载PDF
导出
摘要 Community-acquired pneumonia(CAP)is considered a sort of pneumonia developed outside hospitals and clinics.To diagnose community-acquired pneumonia(CAP)more efficiently,we proposed a novel neural network model.We introduce the 2-dimensional wavelet entropy(2d-WE)layer and an adaptive chaotic particle swarm optimization(ACP)algorithm to train the feed-forward neural network.The ACP uses adaptive inertia weight factor(AIWF)and Rossler attractor(RA)to improve the performance of standard particle swarm optimization.The final combined model is named WE-layer ACP-based network(WACPN),which attains a sensitivity of 91.87±1.37%,a specificity of 90.70±1.19%,a precision of 91.01±1.12%,an accuracy of 91.29±1.09%,F1 score of 91.43±1.09%,an MCC of 82.59±2.19%,and an FMI of 91.44±1.09%.The AUC of this WACPN model is 0.9577.We find that the maximum deposition level chosen as four can obtain the best result.Experiments demonstrate the effectiveness of both AIWF and RA.Finally,this proposed WACPN is efficient in diagnosing CAP and superior to six state-of-the-art models.Our model will be distributed to the cloud computing environment.
出处 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期21-34,共14页 计算机系统科学与工程(英文)
基金 This paper is partially supported by Medical Research Council Confidence in Concept Award,UK(MC_PC_17171) Royal Society International Exchanges Cost Share Award,UK(RP202G0230) British Heart Foundation Accelerator Award,UK(AA/18/3/34220) Hope Foundation for Cancer Research,UK(RM60G0680) Global Challenges Research Fund(GCRF),UK(P202PF11) Sino-UK Industrial Fund,UK(RP202G0289) LIAS Pioneering Partnerships award,UK(P202ED10) Data Science Enhancement Fund,UK(P202RE237).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部