期刊文献+

Filling the“vertical gap”between canopy tree species and understory shrub species:biomass allometric equations for subcanopy tree species 被引量:1

下载PDF
导出
摘要 Subcanopy tree species are an important component of temperate secondary forests.However,their biomass equations are rarely reported,which forms a“vertical gap”between canopy tree species and understory shrub species.In this study,we destructively sampled six common subcanopy species(Syringa reticulate var.amurensis(Rupr.)Pringle,Padus racemosa(Lam.)Gilib.,Acer ginnala Maxim.,Malus baccata(Linn.)Borkh.,Rhamnus davurica Pall.,and Maackia amurensis Rupr.et Maxim.)to establish biomass equations in a temperate forest of Northeast China.The mixed-species and species-specifi c biomass allometric equations were well fi tted against diameter at breast height(DBH).Adding tree height(H)as the second predictor increased the R^(2)of the models compared with the DBH-only models by–1%to+3%.The R^(2)of DBH-only and DBH-H equations for the total biomass of mixed-species were 0.985 and 0.986,respectively.On average,the biomass allocation proportions for the six species were in the order of stem(45.5%)>branch(30.1%)>belowground(19.5%)>foliage(4.9%),with a mean root:shoot ratio of 0.24.Biomass allocation to each specifi c component diff ered among species,which aff ected the performance of the mixed-species model for particular biomass component.When estimating the biomass of subcanopy species using the equations for canopy species(e.g.,Betula platyphylla Suk.,Ulmus davidiana var.japonica(Rehd.)Nakai,and Acer mono Maxim.),the errors in individual biomass estimation increased with tree size(up to 68.8%at 30 cm DBH),and the errors in stand biomass estimation(up to 19.2%)increased with increasing percentage of basal area shared by subcanopy species.The errors caused by selecting such inappropriate models could be removed by multiplying adjustment factors,which were usually power functions of DBH for biomass components.These results provide methodological support for accurate biomass estimation in temperate China and useful guidelines for biomass estimation for subcanopy species in other regions,which can help to improve estimates of forest biomass and carbon stocks.
出处 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第4期903-913,共11页 林业研究(英文版)
基金 supported by the National Key Research and Development Program(2021YFD220040105) National Natural Science Foundation of China(32171765).
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部