期刊文献+

开源软件缺陷预测方法综述 被引量:3

Survey of Open-Source Software Defect Prediction Method
下载PDF
导出
摘要 开源软件缺陷预测通过挖掘软件历史仓库的数据,利用与软件缺陷相关的度量元或源代码本身的语法语义特征,借助机器学习或深度学习方法提前发现软件缺陷,从而减少软件修复成本并提高产品质量.漏洞预测则通过挖掘软件实例存储库来提取和标记代码模块,预测新的代码实例是否含有漏洞,减少漏洞发现和修复的成本.通过对2000年至2022年12月软件缺陷预测研究领域的相关文献调研,以机器学习和深度学习为切入点,梳理了基于软件度量和基于语法语义的预测模型.基于这2类模型,分析了软件缺陷预测和漏洞预测之间的区别和联系,并针对数据集来源与处理、代码向量的表征方法、预训练模型的提高、深度学习模型的探索、细粒度预测技术、软件缺陷预测和漏洞预测模型迁移六大前沿热点问题进行了详尽分析,最后指出了软件缺陷预测未来的发展方向. Open-source software defect prediction reduces software repair costs and improves product quality by mining data from software history warehouses,using the syntactic semantic features of metrics related to software defects or the source code itself,and utilizing machine learning or deep learning methods to find software defects in advance.Vulnerability prediction extracts and tags code modules by mining software instance repositories to predict whether new code instances contain vulnerabilities in order to reduce the cost of vulnerability discovery and fixing.We investigate and analyze the relevant literatures in the field of software defect prediction from 2000 to December 2022.Taking machine learning and deep learning as the starting point,we sort out two types of prediction models which are based on software metrics and grammatical semantics.Based on the two types of models,the difference and connection between software defect prediction and vulnerability prediction are analyzed.Moreover,six frontier hot issues such as dataset source and processing,code vector representation method,pre-training model improvement,deep learning model exploration,fine-grained prediction technology,software defect prediction and vulnerability prediction model migration are analyzed in detail.Finally,the future development direction of software defect prediction is pointed out.
作者 田笑 常继友 张弛 荣景峰 王子昱 张光华 王鹤 伍高飞 胡敬炉 张玉清 Tian Xiao;Chang Jiyou;Zhang Chi;Rong Jingfeng;Wang Ziyu;Zhang Guanghua;Wang He;Wu Gaofei;Hu Jinglu;Zhang Yuqing(School of Cyber Engineering,Xidian University,Xi’an 710126;National Computer Network Intrusion Protection Center(University of Chinese Academy of Sciences),Beijing 101408;School of Information Science and Engineering,Hebei University of Science and Technology,Shijiazhuang 050018;Guangxi Key Laboratory of Cryptography and Information Security(Guilin University of Electronic Technology),Guilin,Guangxi 541000;Graduate School of Information,Production and Systems,Waseda University,Japan 808-0135;College of Cyberspace Security,Hainan University,Haikou 570228;Zhongguancun Laboratory,Beijing 100094)
出处 《计算机研究与发展》 EI CSCD 北大核心 2023年第7期1467-1488,共22页 Journal of Computer Research and Development
基金 先进密码技术与系统安全四川省重点实验室开放课题(SKLACSS-202205) 海南省重点研发计划项目(GHYF2022010,ZDYF202012) 国家自然科学基金项目(U1836210) 陕西省自然科学基础研究计划(2021JQ-192) 广西密码学与信息安全重点实验室课题(GCIS202123)。
关键词 软件缺陷预测 漏洞预测 机器学习 深度学习 度量元 语法语义分析 software defect prediction vulnerability prediction machine learning deep learning metric semantic and syntactic analysis
  • 相关文献

参考文献6

二级参考文献157

  • 1SchultzJr EE,Brown DS,Longstaff lA.Responding to Computer Security Incidents[OLJ . Lawrence livenmre Nationall.aboratory, ftp://ftp. cert. dfn. del publ docsl csir/ihg. ps. gz, 1950.
  • 2Pfleeger Charles P. Security in Computing[M] . USA: Prentice - Hall, 1997.46 - 48.
  • 3Shin Y, Williams L. Is complexity really the enemy of software security[AJ. Proceedings of the Fourth ACM Workshop on Quality of Protection[C] . Alexandria, Virginia, USA: ACM, 2008.47 - 50.
  • 4Alhazmi OR, Malaiya YK, Ray I. Measuring, analyzing and predicting security vulnerabilities in software systems[J] . Com?puters & Security, 2007 , 26( 3) : 219 - 228.
  • 5Alhazmi OR,Malaiya YK.Prediction capabilities of vulnerability discovery rrodelsl A] . Annual Reliability and Maintainability Sym?posium[ci . Newport Beach, CA: RAMS ,:In). 86 - 91.
  • 6Shin Y, Williams L. An empirical model to predict security vul?nerabilities using code complexity metrics[A] . Proceedings of the Second ACM- IEEE IntemationalSymposium on Empirical Software Engineering and Measurement[C] . Kaiserslautem, Germany:ACM,2008.315 - 317.
  • 7Zhang Su, Caragea D, Ou Xinming. An empirical study on us?ing the national vulnerability database to predict software vul?nerabilitiesl A}. Proceedings of the 22nd International Confer?ence Database and Expert Systems Applications[C] . Toulouse, France:DEXA,2011.217 - 231.
  • 8KimJ, Malaiya YK, Ray I. Vulnerability discovery in multi?version software systems[AJ . IEEE International Symposium on Software Reliability Engineering[C] . Seattle, Washington: IEEE CPS, 2008 . 299 - 300.
  • 9Anderson R. Security in open VeTSUS closed systems-The dance of Boltzmann, Coase and Moorej A] . Proceedings of the Conference on Open Source Software Economics[C] . Cam?bridge: MIT Press, 2002. 1 - 15.
  • 10MusaJ D, lannino A, Okumoto K. Software Reliability Engi?neering[MJ.NY : McGraw-Hill , 1999.193 - 223.

共引文献190

同被引文献12

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部