期刊文献+

结合局部线性嵌入与种子信息流的交互式图像分割算法 被引量:1

Interactive image segmentation algorithm combining local linear embedding and global information
下载PDF
导出
摘要 交互式图像分割是指在分割过程中引入少量的用户指引分割出目标对象,是图像处理最基本的任务之一。现有方法通常需要构建非二次能量函数,并且普遍存在缺乏唯一解、分割精度低等问题。为进一步提高分割质量,提出一种结合局部线性嵌入和种子信息的交互式图像分割算法(seed information combined with local linear embedding,SILLE)。该算法考虑像素点的局部信息以及先验信息,将标记种子点的信息融入到新构建的能量函数中,以一种有效且快速的最小化方案得到能量函数的唯一且最优解,从而获得更加准确的分割结果。最后在不同数据集上,与不同方法进行多种指标的对比,验证了算法的有效性和可行性。 Interactive image segmentation refers to bringing in a small number of user guidelines to segment the target object during the segmentation process and is one of the most fundamental tasks in image processing.Existing methods usually require the construction of non-quadratic energy functions and generally suffer from the lack of unique solutions and low segmentation accuracy.To further improve the segmentation quality,this paper proposed an interactive image segmentation algorithm combining local linear embedding and seed information(SILLE).The algorithm toke into account the local and a priori information of the pixel points and incorporated the information of the labeled seed points into the newly constructed energy function to obtain a unique and optimal solution of the energy function with an efficient and fast minimization scheme,thus obtaining more accurate segmentation results.Finally,comparison of different methods on different datasets verifies the effectiveness and feasibility of the algorithm.
作者 龙建武 胡绪军 Long Jianwu;Hu Xujun(College of Computer Science&Engineering,Chongqing University of Technology,Chongqing 400054,China)
出处 《计算机应用研究》 CSCD 北大核心 2023年第7期2235-2240,共6页 Application Research of Computers
基金 重庆市教委科学技术研究计划青年项目(KJQN202201148) 重庆市教委人文社会科学研究青年项目(23SKGH263) 重庆市教委人文社科研究(重点)项目(17SKG136) 国家自然科学青年基金资助项目(61502065) 重庆市科委基础科学与前沿技术研究重点项目(cstc2015jcyjBX0127)。
关键词 局部线性嵌入 种子信息 交互式图像分割 local linear embedding seed information interactive image segmentation
  • 相关文献

参考文献5

二级参考文献31

  • 1Boykov Y, Funka-Lea G. Graph cuts and efficient N-D image segmentation. International Journal of Computer Vision, 2006, 70(2): 109-131.
  • 2Han S D, Tao W B, Wang D S, Tai X C, Wu X L. Image segmentation based on grabcut framework integrating multiscale nonlinear structure tensor. IEEE Transactions on Image Processing, 2009, 18(10): 2289-2302.
  • 3Delong A, Boykov Y. A scalable graph-cut algorithm for N-D grids. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.
  • 4Han S D, Tao W B, Wu X L, Tai X C, Wang T J. Fast image segmentation based on multilevel banded closed-form method. Pattern Recognition Letters, 2010, 31(3): 216-225.
  • 5Li Y, Sun J, Tang C K, Shum H Y. Lazy snapping. ACM Transactions on Graphics, 2004, 23(3): 303--308.
  • 6Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 7Christoudias C M, Georgescu B, Meer P. Synergism in low level vision. In: Proceedings of the 16th International Conference on Pattern Recognition. Washington D.C., USA: IEEE, 2002. 150-155.
  • 8Meet P, Georgescu B. Edge detection with embedded confidence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(12): 1351-1365.
  • 9Wang Z Z, Vemuri B C. DTI segmentation using an information theoretic tensor dissimilarity measure. IEEE Transactions on Medical Imaging, 2005, 24(10): 1267-1277.
  • 10Falk T H, Yuan H, Chan W Y. Single-ended quality measurement of noise suppressed speech based on Kullback- Leibler distances. Journal of Multimedia, 2007, 2(5): 19-26.

共引文献73

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部