摘要
为了提高对电动液压驱动全向移动机器人的轨迹跟踪控制能力,提出基于数据融合的全向移动机器人轨迹跟踪方法.构建全向移动机器人的人与环境交互动力学驱动模型及机器人的运动学参数模型,采用多自由度多模型的分层运动控制方法实现对机器人的位姿参数数据融合跟踪识别,提取机器人轨迹跟踪的动态模型参数.通过对机器人移动过程中的步频、周期等参数估计,采用机构自由度和运动复杂性参数融合估计的方法,构建机器人轨迹跟踪控制的联合协同参数解算模型,根据参数优化解析结果,以躯体平衡与环境自适应控制为最优化约束条件,实现机器人轨迹跟踪控制优化.仿真结果表明:采用该方法进行全向移动机器人轨迹跟踪的自适应性较好,振荡抑制能能力较强,提高了机器人全向移动的稳定性和鲁棒性.
In order to improve the trajectory tracking control ability of electro-hydraulic driven omnidirectional mobile robot,a trajectory tracking method of omnidirectional mobile robot based on data fusion is proposed.The dynamic driving model of human-environment interaction of omnidirectional mobile robot is built,and the parameter model of robot kinematics model is built.Multi-degree-of-freedom and multi-model layered motion control method is adopted to realize the fusion tracking and recognition of robot pose parameter data,and the dynamic model parameters of robot trajectory tracking are extracted.Based on the estimation of time-related parameters such as step frequency and period during robot movement,the fusion estimation method of mechanism degree of freedom and motion complexity parameters is adopted.A joint collaborative parameter solution model for trajectory tracking control of electro-hydraulic driven omnidirectional mobile robot is constructed.According to the analytical results of parameter optimization,the robot trajectory tracking control is optimized by taking body balance and environment adaptive control as the optimization constraints.The simulation results show that this method has good adaptability and strong ability to restrain oscillation,which improves the stability and robustness of omnidirectional mobile robot.
作者
郑志娴
郑晶
陈小娥
ZHENG Zhi-xian;ZHENG Jing;CHEN Xiao-e(School of Information and Intelligent Transportation,Fujian Chuanzheng Communications College,Fuzhou 350007,China;School of Electronic Information Science,Fujian Jiangxia University,Fuzhou 350108,China)
出处
《兰州文理学院学报(自然科学版)》
2023年第4期35-39,共5页
Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金
福建省中青年教师教育科研项目(JAT210719,JAT210704)
教育部人文社会科学研究规划基金(22YJAZH151)。