期刊文献+

发电厂智能巡检机器人关键技术及应用发展趋势 被引量:8

Key Technologies and Application Trends of Intelligent Inspection Robots for Power Plants
下载PDF
导出
摘要 电力巡检机器人是一种基于传感器、计算机视觉和导航定位等技术的自动化、智能化设备,用于对电力设备进行巡检、监测和诊断预警。随着新一代人工智能(AI)技术的快速发展,巡检机器人的关键技术正在不断创新与完善。在发电厂中,巡检机器人可以利用先进AI技术监控现场仪表、管道、输煤皮带等设备并进行异常识别和预警分析。分析了发电厂典型应用场景和任务需求。结合巡检机器人的发展现状和趋势,总结了巡检机器人导航定位、仪表识别、管道缺陷检测等方面的关键技术。当前,巡检机器人已经在发电厂得到了广泛应用。未来,随着技术的进一步发展和应用场景的不断扩大,电力巡检机器人将成为电力行业智能化转型的重要组成部分。 Power inspection robot is an automated and intelligent device based on sensor,computer vision and navigation positioning technologies,which is used for inspection,monitoring and diagnosis early warning of power equipment.With the rapid development of a new generation of artificial intelligence(AI)technology,the key technologies of inspection robots are being continuously innovated and improved.In power plants,inspection robots can use advanced AI technology to monitor on site instruments,pipelines,coal transmission belts and other equipment and perform abnormality identification and early warning analysis.Typical application scenarios and task requirements of power plants are analyzed.Combining the current development status and trends,etc of inspection robots,the key technologies in navigation positioning,instrument identification,and pipeline defect detection of inspection robots are summarized.Currently,inspection robots have been widely used in power plants.In the future,with the further development of technology and the continuous expansion of application scenarios,power inspection robots will become an important part of the intelligent transformation of the power industry.
作者 彭道刚 周威仪 葛明 陈晨 潘俊臻 PENG Daogang;ZHOU Weiyi;GE Ming;CHEN Chen;PAN Junzhen(College of Automation Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处 《自动化仪表》 CAS 2023年第7期1-7,共7页 Process Automation Instrumentation
基金 上海市“科技创新行动计划”高新技术领域基金资助项目(21511101800)。
关键词 巡检机器人 导航定位 仪表识别 缺陷检测 泄漏检测 Inspection robot Navigation positioning Instrument identification Defect detection Leak detection
  • 相关文献

参考文献17

二级参考文献165

共引文献282

同被引文献64

引证文献8

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部