期刊文献+

基于深度学习网络的机器人定位误差估计与补偿研究 被引量:1

Robot Localization Error Estimation and Compensation Based on Deep Learning Network
下载PDF
导出
摘要 为了合理补偿机器人定位误差,提升作业能力,该文提出基于深度学习网络的机器人定位误差估计与补偿方法。确定机器人定位采样点,获取机器人末端定位理论位姿,以机器人末端理论位姿作为深度神经网络输入量,机器人末端定位误差作为输出量,利用遗传粒子群算法优化权值与阈值,得到机器人定位误差估计值,并对理论位姿坐标反向迭加该误差估计值,完成定位误差补偿。实验证明,该方法能够有效补偿机器人的位移偏差和关节角度偏差,精准抓取目标物体,并在不同数量采样点条件下,可使不同类型的机器人保持较高的定位精度。 In order to reasonably compensate for robot positioning errors and improve operational capabilities,a deep learning network-based robot positioning error estimation and compensation method is proposed.Determine the sampling points for robot positioning,obtain the theoretical pose of the robot’s end positioning,use the theoretical pose of the robot’s end as the input of the deep neural network,and use the robot’s end positioning error as the output.Use genetic particle swarm optimization algorithm to optimize the weights and thresholds to obtain the estimated value of the robot’s positioning error,and reverse stack the estimated value of the theoretical pose coordinates to complete positioning error compensation.Experiments have shown that this method can effectively compensate for the displacement deviation and joint angle deviation of robots,accurately grasp the target object,and maintain high positioning accuracy for different types of robots under different number of sampling points.
作者 田立国 熊磊 TIAN Liguo;XIONG Lei(School of Automotive and Mechanical and Electrical Engineering,Hanzhong Vocational and Technical College,Hanzhong 723000,China)
出处 《自动化与仪表》 2023年第7期38-41,46,共5页 Automation & Instrumentation
关键词 深度学习网络 误差估计 误差补偿 定位采样 深度神经网络 遗传粒子群算法 deep learning network error estimation error compensation location sampling deep neural network genetic particle swarm optimization
  • 相关文献

参考文献10

二级参考文献57

共引文献86

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部