期刊文献+

基于人工数据融合的柴油机故障数据增强方法 被引量:1

Diesel engine fault data augmentation method based on artificial data fusion
下载PDF
导出
摘要 针对基于数据驱动的柴油机故障诊断方法在训练数据匮乏时易过拟合、准确率低的问题,提出一种基于人工数据融合的数据增强方法,实现训练数据的增广。该方法将Wasserstein距离与梯度惩罚法引入辅助分类生成对抗网络(auxiliary classifier generative adversarial network,ACGAN),解决原始ACGAN训练不稳定的问题;将优化前后的ACGAN生成的两种人工数据按比例引入原始训练集中,从强化原有数据和优化诊断网络判定范围两个角度对训练集进行数据增强。经柴油机故障诊断试验验证,采用该方法对训练集进行数据增强后,在不同故障类型下的诊断准确率均有明显提高,且效果优于其他对比方法。 Here,aiming at the problem of data-driven diesel engine fault diagnosis method being easy to over-fit and having low accuracy due to lack of training data,a data augmentation method based on artificial data fusion was proposed to realize augmentation of training data.In this method,Wasserstein distance and gradient penalty method were introduced into the auxiliary classifier generative adversarial network(ACGAN)to solve the problem of the original ACGAN’s training being unstable.The two kinds of artificial data generated by ACGAN before and after optimization were introduced into the original training set in proportion,and the training set was augmented from two aspects of strengthening original data and optimizing judgment range of diagnosis network.Diesel engine fault diagnosis tests showed that diagnostic accuracies under different fault types are obviously improved by using the proposed method to augment training set’s data;the proposed method’s effect is better compared with other methods mentioned here.
作者 黄盟 毕晓阳 杨晓 李鑫 汤代杰 毕凤荣 HUANG Meng;BI Xiaoyang;YANG Xiao;LI Xin;TANG Daijie;BI Fengrong(State Key Lab of Engines,Tianjin University,Tianjin 300072,China;College of Mechanical Engineering,Hebei University of Technology,Tianjin 300401,China)
出处 《振动与冲击》 EI CSCD 北大核心 2023年第13期278-286,共9页 Journal of Vibration and Shock
基金 河北省高等学校科学技术研究项目(QN2022159)。
关键词 生成对抗网络(GAN) 数据融合 柴油机 数据增强 generative adversarial network(GAN) data fusion diesel engine data augmentation
  • 相关文献

参考文献5

二级参考文献42

  • 1李兵,韩睿,何怡刚,张晓艺,侯金波.改进随机森林算法在电机轴承故障诊断中的应用[J].中国电机工程学报,2020,40(4):1310-1319. 被引量:79
  • 2BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 3BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 4HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 5BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 6LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 7VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 8VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 9YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 10POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.

共引文献995

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部