期刊文献+

乙酸型甲烷八叠球菌细胞工厂的设计与构建研究进展 被引量:1

Research progress in the establishment of Methanosarcina acetivorans as cell factories
下载PDF
导出
摘要 在整个地球演化历史过程中,产甲烷古菌在生物地球碳循环中一直扮演着重要角色。据报道,约三分之二的地球生物甲烷通量来自乙酸型产甲烷途径,乙酸型甲烷八叠球菌(Methanosarcina acetivorans)是目前发现为数不多的可以进行乙酸型产甲烷途径的模式产甲烷古菌,对M.acetivorans代谢途径的解析、改造和应用可为温室气体甲烷的减排与其作为能源的合理利用提供新思路。本文综述了M.acetivorans的产甲烷代谢途径、遗传改造策略、细胞工厂构建3个方面的研究进展,分析了M.acetivorans与其他进行乙酸型产甲烷代谢的产甲烷古菌在以上三方面的异同,并对进一步设计和构建其作为微生物细胞工厂所面临的问题与挑战进行了展望。 Methanogenic archaea play an important role in the global biological carbon cycle throughout the evolution of the earth.Methanosarcina acetivorans,as one of the few discovered methanogenic archaea,can undergo aceticlastic methanogenesis.As aceticlastic methanogenesis was reported to contribute two-thirds of the earth’s biomethane flux,the studies on the metabolic pathway of M.acetivorans may provide new approaches to reduce greenhouse gas methane,thus expand its application as an energy source.In this review,we summarized recent research progress of M.acetivorans regarding the methanogenic pathway,the strategies for genetic modification,and the construction of cell factories.In addition,we outlined the similarities and differences between M.acetivorans and other acetate-utilizing methanogenic archaea.In the end,we presented our outlook for further establishment of M.acetivorans as microbial cell factories.
作者 严云峰 闫震 YAN Yunfeng;YAN Zhen(Shandong Key Laboratory of Water Environment Pollution Control and Recycling,School of Environmental Science and Engineering,Shandong University,Qingdao 266237,China;Suzhou Research Institute of Shandong University,Suzhou 215123,China)
出处 《生物加工过程》 CAS 2023年第4期368-378,共11页 Chinese Journal of Bioprocess Engineering
基金 国家自然科学青年基金(22008142) 山东省自然科学优秀青年基金(ZR2022YQ31) 江苏省自然科学青年基金(BK20200232) 山东大学齐鲁青年学者人才计划。
关键词 乙酸型甲烷八叠球菌 产甲烷代谢 遗传改造 细胞工厂 产甲烷古菌 生物甲烷 Methanosarcina acetivorans methanogenesis genetic modification cell factories methanogenic archaea biomethane
  • 相关文献

参考文献4

二级参考文献58

  • 1吴自军,周怀阳,彭晓彤,陈光谦.甲烷厌氧氧化作用:来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据[J].科学通报,2006,51(17):2052-2059. 被引量:20
  • 2陈槐,周舜,吴宁,王艳芬,罗鹏,石福孙.湿地甲烷的产生、氧化及排放通量研究进展[J].应用与环境生物学报,2006,12(5):726-733. 被引量:68
  • 3承磊,仇天雷,邓宇,张辉.油藏厌氧微生物研究进展[J].应用与环境生物学报,2006,12(5):740-744. 被引量:25
  • 4DLUGOKENCKY E J, BRUHWILER L, WHITE J W C, et al. Observational constraints on recent increases in the atmospheric CH4 burden. Geophysical Research Letters, 2009,36(18) : L18803.
  • 5MYHRE G, SHINDELL D. Climate Change 2013: the Physical Science Basis. Cambridge University Press, 2013: 659-740.
  • 6LELIEVELD J, CRUTZEN P J, DENTENER F J. Changing eoncentration, lifetime and climate forcing of atmospherie methane. Tellus Series B Chemical and Physical Meteorology, 1998,50(2) : 128-150.
  • 7KNITTEL K, BOETIUS A. Anaerobie oxidation of methane: progress with an unknown process. Annual Review of Microbiology, 2009,63 : 311-334.
  • 8GUPTA V, SMEMO K A, YAVITT J B, et al. Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type. Environmental Science g~ Technology, 2013,47(15) : 8273-8279.
  • 9REEBURGH S W. Oceanic methane biogeochemistry. Chemical Reviews, 2007,107(2) :486 513.
  • 10KALYUZHNAYA M G, PURIB A W, LIDSTROM M E. Metabolic engineering in metbanotrophic bacteria. Metabolic Engineering, 2015,29 : 142-152.

共引文献138

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部