摘要
Exploiting inexpensive and effective nickel-based catalysts that produce hydrogen from liquid organic hydrogen carriers(LOHCs)is crucial to alleviating the global energy and environmental crisis.In this study,we report a rational strategy that can realize atomically dispersed Ni atoms anchored on vacancy-abundant boron nitride nanosheets(Ni1/h-BNNS)with high specific surface area(up to 622 m^(2)·g^(-1))and abundant hydroxyl groups for high efficient hydrogen production.Methanol dehydrogenation results show an excellent hydrogen production performance catalyzed by this Ni1/h-BNNS,as evidenced by a remarkably high H_(2) yield rate(1684.23 mol·mol_(Ni)^(-1)·h^(-1)),nearly 100%selectivity toward hydrogen and CO,and high anti-coking performance.Density functional theory(DFT)calculations reveal that the outstanding catalytic performance of Ni1/h-BNNS primarily originates from the unique coordinated environment of atomically dispersed Ni(Ni-B_(2)O_(2))and the synergistic interaction between Ni single atoms and the h-BNNS support.Specifically,the coordinated O atoms play a decisive role in promoting the activity of Ni,and the neighboring B sites significantly decrease the energy barriers for the adsorption of key intermediates of methanol dehydrogenation.This study offers a novel strategy for developing high-performance and stable single-atom Ni catalysts by precisely controlling single-atom sites on h-BN support for sustainable hydrogen production.
基金
This work was funded by the Shandong Province Major Scientific and Technological Innovation Project(No.2021CXGC010803)
the National Natural Science Foundation of China(No.21876188)
M.Y.acknowledges National Research Foundation Competitive Research Programs(No.NRFCRP24-2020-0002)
M.Y.acknowledges the funding support(project ID:1-BE47,ZE0C,ZE2F,and ZE2X)from the Hong Kong Polytechnic University.We acknowledge the Centre for Advanced 2D Materials and Graphene Research at the National University of Singapore and the National Supercomputing Centre Singapore for providing computing resources.