摘要
针对带有变弯度后缘的机翼建立了阵风响应分析的数学模型,并开展了阵风响应减缓的仿真研究。采用计算流体力学(CFD)方法计算变弯度后缘给定动态偏转运动下的广义非定常气动力,并基于状态观测器法辨识CFD数据建立后缘动态偏转下的广义气动力模型,采用面元法计算模态运动、阵风引起的广义气动力,利用广义预测控制(GPC)方法设计阵风减缓控制律,在此基础上对变弯度后缘与传统铰链舵面动态气动力特性进行对比。仿真结果表明:基于变弯度后缘的GPC方法能够有效减缓由阵风引起的机翼翼尖加速度响应,翼尖加速度减缓效率为44.33%;相比传统铰链舵面,变弯度后缘偏转时弦向剖面上下表面压力分布更连续,相同舵偏下对机翼动态气动力影响更大,阵风响应减缓效率也更高,采用变弯度后缘进行阵风减缓具有更为广阔的应用前景。
A mathematical model for gust response analysis is established for a wing with camber morphing trailing edges,and a simulation study of gust response alleviation is carried out.The computational fluid dynamics method is used to calculate the generalized unsteady aerodynamic force under the given dynamic morphing of the trailing edge,and the generalized aerodynamic force model under the dynamic deflection of the trailing edge is established based on the state observer method,.The panel method is used to calculate the generalized aerodynamic force caused by mode motion and gust,while the generalized predictive control(GPC)method is used in the design of gust alleviation control law.On this basis,the aerodynamic characteristics of the camber morphing trailing edge and the traditional hinged flap are compared.The simulation results show that the GPC method based on the camber morphing trailing edge can effectively alleviate the wing-tip acceleration response caused by gust,and the wing-tip acceleration reduction efficiency is 44.25%.The wing with morphing trailing edge has a more continuous pressure distribution on the upper and lower surfaces,a greater impact on the aerodynamics,and higher acceleration reduction efficiency.The use of camber morphing trailing edges for gust alleviation has a broader application prospect.
作者
尉濡恺
戴玉婷
杨超
于思恒
WEI Rukai;DAI Yuting;YANG Chao;YU Siheng(School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China)
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2023年第7期1864-1874,共11页
Journal of Beijing University of Aeronautics and Astronautics
基金
国家自然科学基金(11672018)。
关键词
变弯度后缘
阵风响应减缓
降阶模型
主动控制
非定常气动力
camber morphing trailing edge
gust response alleviation
reduced order model
active control
unsteady aerodynamic force