期刊文献+

基于一阶矩改进的太阳图像灰度质心算法 被引量:1

An Improved Method to Calculate the Solar Centroid Based on First Moment
下载PDF
导出
摘要 提出了一种改进的基于一阶矩算法的太阳图像灰度质心计算方法。与一阶矩算法相比,新算法的像素误差减小了0.74209 pixel。该算法首先采用梯度法消除太阳图像的背景噪声,然后将图像划分为与指定线对应的区域,在计算这些线的质心之后,最终利用简化质心点和一阶矩计算太阳图像的灰度质心。此外,给出了直线的最佳选择长度(88个点)和最佳间距(7.5°)。通过提取标准圆盘的质心,将该算法的提取精度与一阶矩法进行了比较,结果表明,该方法是有效和准确的,可以在亚像素级别有效地提取二维图像灰度的质心。 An improved method to calculate the solar centroid based on the first moment is proposed in this study.The pixel error of the new algorithm is elevated at least 0.74209 pixel compared with the first moment method.The gradient method is adopted to eliminate the background noise of solar image.Then,the image is divided into different regions which corresponded to designated lines.After the centroids of these lines are calculated,the centroid of solar image is calculated with these simplified points by first moment method.Furthermore,the optimal length(88 points)and space(7.5°)of the lines are figured out,and these two values can further improve the accuracy of solar centroid.In addition,the extraction accuracy of the proposed algorithm is compared with that of the first moment method by extracting the centroid of the standard disk.The results demonstrate that this method is available and exact and the algorithm can effectively extract the centroid of two-dimensional image at sub-pixel level.
作者 宋金虎 张旭 马大龙 窦智 SONG Jinhu;ZHANG Xu;MA Dalong;DOU Zhi(FAW AUDI Sales Company,Ltd.,Hangzhou 310000;Hangzhou Huicui Intelligent Technology Co.,Ltd,Hangzhou 310000;Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033)
出处 《长春理工大学学报(自然科学版)》 2023年第3期107-112,共6页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金(42104166)。
关键词 梯度算法 线质心 一阶矩 二维图像质心算法 gradient algorithm linear centroid f irst moment 2-d image centroid
  • 相关文献

参考文献6

二级参考文献45

  • 1宋克欧,黄凤岗,朱铁一.二值图像目标质心快速下降迭代搜索算法[J].模式识别与人工智能,1994,7(2):143-149. 被引量:8
  • 2M H Singer. A general approach to moment calculation for polygons and line segments. Pattern Recognition, 1993, 26(7) :1019--1028.
  • 3X Y Jiang, H Bunke. Simple and fast computation of moments.Pattern Recognition, 1991, 24(8) : 801 --806.
  • 4M F Zakaria, L J Vroomen, P L A Zsombor et al. Fast algorithm for the computation of moment invariants. Pattern Recognition,1987, 20(6): 639-643.
  • 5M Dai, P Baylou, M Najim. An efficient algorithm for computation of shape moments from run-length codes or chain codes. Pattern Recognition, 1992, 25(10): 1119--1128.
  • 6B C Li. A new computation of geometric moments. Pattern Recognition, 1993, 26(1) : 109-113.
  • 7J H Sossa-Azuela, CYanez-Marquez, J L Diaz de Leon S.Computing geometric moments using morphological erosions.Pattern Recognition, 2001, 34(2) : 271 --276.
  • 8Chin-Hsiung Wu, Shi-Jinn Horng, Pei-Zong Lee. A new computation of shape moments via quadtree. Pattern Recognition,2001, 34(7): 1319--1330.
  • 9Belkasirn-Mohamed Kamel. Fast computation of 2-D image moments using biaxial transform. Pattern Recognition, 2001, 34(9) : 1867-- 1887.
  • 10R Mukundan, K R Ramakrishnan. Fast computation of legendre and zenic moments. Pattern Recognition, 1999, 32(9): 1433--1442.

共引文献62

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部