期刊文献+

基于改进粒子群算法的光纤网络异常检测优化方法

Optical fiber network anomaly detection optimization method based on improved particle swarm optimization algorithm
原文传递
导出
摘要 双边耦合时分复用无源光纤网络受到多径衰落影响导致网络输出异常,为了提高光纤网络的输出准确性,提出基于改进粒子群算法的光纤网络异常检测方法。构建时分复用无源光纤网络的多径信道模型,采用光纤馈线的远程传输机制实现对网络传输的信道均衡设计,提取光纤网络传输信道中的时频特征量,根据传输流量的多模衰落特性实现网络传输异常特征点检测定位,采用改进粒子群算法实现对光纤网络异常流量检测过程中的迭代寻优控制,采用光链路终端传输控制和点到点(P2P)链路故障监测方法实现对光纤网络的异常检测。通过实验可得,该方法进行光纤网络异常检测的故障识别能力较好,故障计算时间较短,检测效率较高。信道均衡性较强,传输误码率较低,其数值稳定在[0.02-0.04]区间内。提高了光纤网络的传输稳定性和可靠性。 In order to improve the output accuracy of the optical fiber network,a novel anomaly detection method based on im-proved particle swarm optimization(PSO)algorithm is proposed.The multi-path channel model of time-division multiplexing passive optical network is constructed.The remote transmission mechanism of optical fiber feeder is used to realize the channel equalization design of network transmission.The time-frequency characteristic quantity in the transmission channel of optical fiber network is ex-tracted.The detection and location of network transmission abnormal characteristic points are realized according to the multimode fa-ding characteristics of transmission traffic.The improved particle swarm optimization algorithm is used to realize the iterative optimiza-tion control in the detection process of optical fiber network abnormal traffic,The optical link terminal transmission control and point-to-point(P2P)link fault monitoring methods are used to realize the anomaly detection of the optical network.The experiment shows that this method has good fault detection ability,short fault calculation time and high detection efficiency.The channel equali-zation is strong,the transmission error rate is low,and its value is stable in the range of[0.02-0.04].It improves the transmission stability and reliability of optical fiber network.
作者 王红梅 白亮亮 尹自豪 WANG Hongmei;BAI Liangiang;YIN Zihao(Information Engineering College Xinjiang Institute of Engineering,Urumqi 830023,China)
出处 《自动化与仪器仪表》 2023年第6期27-30,共4页 Automation & Instrumentation
基金 新疆教育厅国家级大学生创新创业项目:基于可重构智能表面的联邦学习联合设计(202210994016)。
关键词 改进粒子群算法 光纤网络 异常检测 信道均衡 故障定位 improved particle swarm optimization optical fiber network anomaly detection channel equalization fault location
  • 相关文献

参考文献11

二级参考文献98

  • 1杨燕,靳蕃,Kamel M.微粒群优化算法研究现状及其进展[J].计算机工程,2004,30(21):3-4. 被引量:23
  • 2潘文超.果蝇最佳化演算法-最新演化式计算技术[M].台北:沧海书局,2011:1-12.
  • 3Pan W T. A new fruit fly optimization algorithm: Taking the financial distress model as an example [ J ]. Knowledge-Based Systems, 2012, 26: 69 - 74.
  • 4Dai H, Zhao G, Lu J, et al. Comment and improvement on "A new fruit fly optimization algorithm: Taking the financial distress model as an example" [ J]. Knowledge-Based Systems, 2014, 59 : 159 - 160.
  • 5Lei X, Du M, Xu J, et al. Chaotic fruit fly optimization algorithm [ M ]//Advances in Swarm Intelligence. Berlin, Germany : Springer Interna- tional Publishing, 2014 : 74 - 85.
  • 6Yuan X, Dai X, Zhao J, et al. On a novel multiswarm fruit fly optimization algorithm and its application[ J]. Applied Mathematics and Com- putation, 2014, 233:260-271.
  • 7Pan Q K, Sang H Y, Duan J H, et al. An improved fruit fly optimization algorithm for continuous function optimization problems [ J ]. Knowl- edge-Based Systems, 2014, 62 : 69 - 83.
  • 8Wang L, Zheng X, Wang S. A novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problem[ J]. Knowledge- Based Systems, 2013, 48 : 17 -23.
  • 9Derrac J, Garcta S, Molina D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolution- ary and swarm intelligence algorithms[J]. Swarm & Evolutionary Computation, 2011 (1) : 3 -18.
  • 10Altman E I. Financial Ratios, Discriminant analysis and the prediction of corporate bankruptcy[ J ]. Journal of Finance, 1968, 23 (4) : 589 - 609.

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部