摘要
针对全双工水下无线光通信(FD-UWOC)系统中存在的自干扰限制系统通信性能的问题,文章提出了一种双波长收发分离的方法。基于Monte Carlo数值仿真方法,在Jerlov I、Jerlov IB和Jerlov II 3种典型水质下,分析了自干扰对450 nm单波长、525 nm单波长和双波长FD-UWOC系统性能的影响情况。仿真结果表明,水质越差,自干扰越强,并且自干扰的增强会显著降低FD-UWOC的光信噪比(OSNR),进而限制了系统的最远传输距离;采用双波长收发分离方法的FD-UWOC系统相较于单波长FD-UWOC系统能带来约60 dB的OSNR提升,从而可以实现更远的传输距离,其中,在Jerlov II类水质下传输距离提升了80 m,并能在Jerlov I和Jerlov IB类水质下实现大于100 m的有效传输距离。这些结果在FD-UWOC系统设计中具有一定的参考意义。
A dual-wavelength transceiver separation method is proposed for the problem of self-interference limiting the system communication performance in Full-Duplex Underwater Wireless Optical Communication(FD-UWOC)systems.Based on the Monte Carlo numerical simulation,the effects of self-interference on the performance of 450 nm single-wavelength,525 nm single-wavelength and dual-wavelength FD-UWOC systems are analyzed under three typical water qualities of Jerlov I,Jerlov IB and Jerlov II.The simulation results show that the poorer the water quality,the stronger the self-interference.It is also shown that the enhancement of self-interference will significantly reduce the Optical Signal to Noise Ratio(OSNR)of FD-UWOC,which limits the longest transmission distance of the system.The FD-UWOC system using the dual-wavelength transceiver separation method can bring about 60 dB improvement in OSNR compared with the single-wavelength FD-UWOC system,which can achieve a longer transmission distance.An 80 m improvement in Jerlov II water quality,and an effective transmission distance of more than 100 m in Jerlov I and Jerlov IB water quality are achieved.These results provide some reference significance to the design of FD-UWOC system.
作者
王杰
范婷威
申玲菲
黄志伟
迟楠
周田华
WANG Jie;FAN Ting-wei;SHEN Ling-fei;HUANG Zhi-wei;CHI Nan;ZHOU Tian-hua(The Ministry of Education Key Laboratory of Electromagnetic Wave Information Science,Department of Communication Science and Engineering,Fudan University,Shanghai 200433,China;Key Laboratory of Space Laser Communication and Detection Technology,Shanghai Institute of Optics and Fine Mechanics,Chinses Academy of Sciences,Shanghai 201800,China;School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处
《光通信研究》
2023年第4期28-33,共6页
Study on Optical Communications
基金
国家重点研发计划资助项目(2022YFC2808100)
国家自然科学基金青年科学基金资助项目(62205358)
中国科学院战略性先导科技专项子课题资助项目(XDA22030206)
国家自然科学基金重点资助项目(62031011)
中国科学院创新基金资助项目(CXJJ-22S005)。