期刊文献+

一种分布式卫星系统基线优化设计方法 被引量:1

A baseline optimization method for distributive satellites system
下载PDF
导出
摘要 分布式卫星星座系统的地面运动目标指示(ground moving target indicator,GMTI)性能取决于输出信杂噪比(signal-to-clutter-plus-noise ratio,SCNR)、定位误差及其他参数。提出了一种新的分布式卫星系统最优基线设计方法。在理想杂波假设下分析了不同速度运动目标的输出SCNR,然后推导了定位误差的表达式。考虑到输出SCNR和定位误差都是沿航向基线的函数,可利用长短基线结合的方法来提高GMTI性能,进而提出一种同时考虑速度响应和定位误差的最优基线搜索方法。此外,详细讨论了基线误差的影响,以确定所提出的方法的GMTI性能是否受到基线误差的影响。最后,通过仿真结果验证了该方法的有效性。 The ground moving target indicator(GMTI)performance of a distribute satellites constellation system depends on the output signal-to-clutter-plus-noise ratio(SCNR),location error and other parameters.A novel baseline optimization method for distributive satellite system is proposed in this paper.The output SCNR of moving targets with different velocities are analyzed with the ideal clutter assumption,and the expression of the location error is then derived.Since both output SCNR and location error are the functions of along-track baseline,combing long and short baselines can improve the potential GMTI capability.As a result,a strategy for determining the optimal baseline is proposed taking both the velocity response and location error into account.Moreover,the influence of baseline error is discussed in detail to determine whether the GMTI performance of the proposed method is affected by the baseline error.Finally,simulation results are provided to validate the effectiveness of the proposed method.
作者 胡瑞贤 张昭 骆成 HU Ruixian;ZHANG Zhao;LUO Cheng(China Academy of Electronics and Information Technology,China Electronic Technology Group Corporation,Beijing 100041,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2023年第8期2423-2437,共15页 Systems Engineering and Electronics
关键词 地面运动目标指示 输出信杂噪比 定位误差 最优基线 ground moving target indicator(GMTI) output signal-to-clutter-plus-noise ratio(SCNR) location error optimal baseline
  • 相关文献

参考文献9

二级参考文献83

  • 1吕波,冯起,张晓发,袁乃昌.对SAR的虚假动目标干扰技术研究[J].现代雷达,2008,30(6):102-104. 被引量:9
  • 2Cerutti-Maori D, Ender J. Performance analysis of multistatic configuratiom for spacebome GMTI based on the auxiliary beam approach[J]. IEE Proceedings Radar Sonar and Navigation,2006,153(2) :96 - 103.
  • 3Delphine J, Cerutfi-Maori D,Ender J.An approach to multistatic spacebome SAR/MTI processing and performance analysis [ A]. Proceedings IGARSS [ C ]. Toulouse: IGARSS, 2003.4446- 4449.
  • 4Hovanession S A, Jocic L B. Spacebome radar design equations and concepts [ A ]. IEEE Aerospace Conference [ C ]. USA: IEEE, 1997. 125 - 136.
  • 5Martin M,Klupar P, Kilberg S, Winter J. Techsat 21 and revolutionizing space missions using microsatellites[ A]. 15th American Institute of Aeronautics Astronautics Conferencep [ C ]. USA;AIAAC,2001.1 - 10.
  • 6Massonnet D. Capabilities and limitations of the interferometric cartwheel[ J]. IEEE Trans Geosci Remote Sens, 2001,39(3 ): 506 - 520.
  • 7Aguttes J P.The SAR train concept:required antenna area distributed over N smaller satellites, increase of performance by N [A]. Proceedings IGARSS [ C ]. Toulouse: IGARSS, 2003. 542-544.
  • 8Wang H. Mainlobe clutter cancellation by DPCA for space- based radars[ A]. IEEE Aerosp Applications Conference Digest [ C]. Crested Butte, CO, USA, 1991.1 - 28.
  • 9Yang L, Wang T, Xing M, et al. A new channel equalization method for airborne multi-channel SAR-GMTI system[ A]. 1st Asian and Pacific Conference on Synthetic Aperture Radar [ C], Huangshan: APCSAR,2007.271 - 274.
  • 10Brennan L, Reed I S. Theory of adaptive radar[ J]. IEEE Trans on Aeros and Electro Syst, 1973,9(2) :237 - 253.

共引文献30

同被引文献22

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部