摘要
固态电解质离子电导率低、电化学稳定窗口窄是制约其商业化应用的关键问题。制备了一种铝酸锂(LAO)纳米棒填充聚碳酸亚丙酯(PPC)的复合固体电解质薄膜(LAO-CSE),并通过扫描电镜、透射电镜、电化学工作站等对LAO纳米棒和复合薄膜的微观结构、电化学性能进行了表征分析。结果表明,加入LAO纳米棒后复合固体电解质膜的离子电导率达到5.0×10^(-4) S/cm,电化学稳定窗口大于4.8 V,LAO-CSE应用于固态锂离子电池表现出优异的室温电化学性能,填充8%(质量分数)LAO的NCM622/LAO-CSE/Li固态电池的首次循环放电比容量为180 mA·h/g,在0.5C下循环100次后容量保持率为97.3%。LAO纳米棒的增强效果归因于棒状填料提供了连续的锂离子传输路径。该LAO-CSE复合固态电解质有望在高压固态锂电池中得到广泛应用。
The low ionic conductivity and narrow electrochemical stability window of solid electrolyte are the key problems restricting their commercial applications.A polypropylene carbonate‐based organic/inorganic composite solid electrolyte filled with lithium aluminate nanorods(LAO-CSE)was fabricated,the microstructure and electrochemical properties of LAO nanorods and composite films were characterized by scanning electron microscope,transmission electron microscope and electrochemical workstation,respectively.The results showed that the ionic conductivity of the composite solid electro‐lyte membrane could be increased to 5.0×10^(-4) S/cm after adding LAO nanorods,and the electrochemical stability window was greater than 4.8 V.LAO-CSE exhibited excellent room‐temperature electrochemical performance when it was applied to solid‐state lithium‐ion batteries.The NCM622/LAO-CSE/Li solid‐state battery filled with 8%(mass fraction)LAO exhibited a first‐cycle specific discharge capacity of 180 mA·h/g,and a capacity retention of 97.3%after 100 cycles at 0.5C.The en‐hanced effect of LAO nanorods could be attributed to the fact that the rod‐like fillers provided a more continuous Li-ion transport path compared with nanoparticles.These LAO-CSE composites were expected to be widely used in high‐voltage solid‐state lithium batteries.
作者
康乐
景茂祥
李东红
扈鑫雨
贾春燕
KANG Le;JING Maoxiang;LI Donghong;HU Xinyu;JIA Chunyan(Zhengzhou Non-ferrous Metals Research Institute Co.Ltd.of CHALCO,Zhengzhou 450041,China;Jiangsu University,Zhenjiang 212013,China)
出处
《无机盐工业》
CAS
CSCD
北大核心
2023年第8期65-70,共6页
Inorganic Chemicals Industry
基金
中铝公司项目(ZZ2019054)。
关键词
铝酸锂纳米棒
固态电解质
电化学
离子电导率
lithium aluminate nanorods
solid electrolyte
electrochemistry
ion conductivity