期刊文献+

铝酸锂纳米棒改性固态电解质的制备及电化学性能研究 被引量:3

Study on preparation and electrochemical performance of lithium aluminate nanorods modified solid electrolyte
下载PDF
导出
摘要 固态电解质离子电导率低、电化学稳定窗口窄是制约其商业化应用的关键问题。制备了一种铝酸锂(LAO)纳米棒填充聚碳酸亚丙酯(PPC)的复合固体电解质薄膜(LAO-CSE),并通过扫描电镜、透射电镜、电化学工作站等对LAO纳米棒和复合薄膜的微观结构、电化学性能进行了表征分析。结果表明,加入LAO纳米棒后复合固体电解质膜的离子电导率达到5.0×10^(-4) S/cm,电化学稳定窗口大于4.8 V,LAO-CSE应用于固态锂离子电池表现出优异的室温电化学性能,填充8%(质量分数)LAO的NCM622/LAO-CSE/Li固态电池的首次循环放电比容量为180 mA·h/g,在0.5C下循环100次后容量保持率为97.3%。LAO纳米棒的增强效果归因于棒状填料提供了连续的锂离子传输路径。该LAO-CSE复合固态电解质有望在高压固态锂电池中得到广泛应用。 The low ionic conductivity and narrow electrochemical stability window of solid electrolyte are the key problems restricting their commercial applications.A polypropylene carbonate‐based organic/inorganic composite solid electrolyte filled with lithium aluminate nanorods(LAO-CSE)was fabricated,the microstructure and electrochemical properties of LAO nanorods and composite films were characterized by scanning electron microscope,transmission electron microscope and electrochemical workstation,respectively.The results showed that the ionic conductivity of the composite solid electro‐lyte membrane could be increased to 5.0×10^(-4) S/cm after adding LAO nanorods,and the electrochemical stability window was greater than 4.8 V.LAO-CSE exhibited excellent room‐temperature electrochemical performance when it was applied to solid‐state lithium‐ion batteries.The NCM622/LAO-CSE/Li solid‐state battery filled with 8%(mass fraction)LAO exhibited a first‐cycle specific discharge capacity of 180 mA·h/g,and a capacity retention of 97.3%after 100 cycles at 0.5C.The en‐hanced effect of LAO nanorods could be attributed to the fact that the rod‐like fillers provided a more continuous Li-ion transport path compared with nanoparticles.These LAO-CSE composites were expected to be widely used in high‐voltage solid‐state lithium batteries.
作者 康乐 景茂祥 李东红 扈鑫雨 贾春燕 KANG Le;JING Maoxiang;LI Donghong;HU Xinyu;JIA Chunyan(Zhengzhou Non-ferrous Metals Research Institute Co.Ltd.of CHALCO,Zhengzhou 450041,China;Jiangsu University,Zhenjiang 212013,China)
出处 《无机盐工业》 CAS CSCD 北大核心 2023年第8期65-70,共6页 Inorganic Chemicals Industry
基金 中铝公司项目(ZZ2019054)。
关键词 铝酸锂纳米棒 固态电解质 电化学 离子电导率 lithium aluminate nanorods solid electrolyte electrochemistry ion conductivity
  • 相关文献

参考文献4

二级参考文献81

  • 1周晓吉,刘婷婷.锂离子电池隔膜材料的制备及其研究进展[J].电池工业,2019,0(5):263-268. 被引量:12
  • 2黄彦瑜.锂电池发展简史[J].物理,2007,36(8):643-651. 被引量:45
  • 3TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414(6861 ): 359-367.
  • 4OHTA N, TAKADA K, ZHANG L, et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Advanced Materials, 2006, 18 (17) : 2226-2229.
  • 5ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451 (7179) : 652-657.
  • 6HOVINGTON P, LAGACI M, GUERFI A, et al. New lithium metal polymer solid state battery for an ultrahigh energy: Nano C-LiFePOa versus nano Li12V3Os[J]. Nano Letters, 2015, 15 (4) : 2671-2678.
  • 7KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10 (9) : 682-686.
  • 8KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: doi:10.1038/nenergy.2016.30.
  • 9DENG Y, EAMES C, CHOTARD J N, et al. Structural and mechanistic insights into fast lithium-ion conduction in LiaSiOa-LiaPO4 solid electrolytes[J]. Journal of the American Chemical Society, 2015, 137 (28) .. 9136-9145.
  • 10DENG Z, RADHAKRISHNAN B, ONG S P. Rational composition optimization of the lithium-rich Li3OCll_xBrx anti-perovskite superionic conductors[J]. Chemistry of Materials, 2015, 27 (10) : 3749-3755.

共引文献90

同被引文献22

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部