期刊文献+

基于多尺度小波和Tsallis熵的水下图像边缘检测 被引量:1

Underwater image edge detection based on multi-scale wavelet and Tsallis entropy
下载PDF
导出
摘要 针对水下图像对比度低和边缘模糊的问题,提出一种基于多尺度小波和Tsallis熵的水下图像边缘检测算法。首先,结合多尺度小波分解特性,采用开放暗通道模型移除低频雾霾现象和软阈值操作降低高频噪声;其次,采用二维高斯函数构造高斯尺度空间进行背景估计,以区分背景与目标信息;最后,结合信息熵和Tsallis熵求得最优阈值,从而得到边缘检测图像。实验结果表明,该算法能有效检测出退化水下图像的边缘轮廓信息,去除虚假边缘情况,准确提取图像的特征边缘。同时应用测试显示,该算法在大气雾霾图像的边缘检测方面表现出色。 To address the problem of low contrast and edge blurring in underwater images,a multi-scale wavelet and Tsallis entropy-based underwater image edge detection algorithm is proposed.Firstly,combining the characteristics of multi-scale wavelet decomposition,the open dark channel model is used to remove low-frequency haze and the soft threshold operation is used to reduce high-frequency noise.Secondly,a two-dimensional Gaussian function is used to construct a Gaussian scale space for background estimation to distinguish background from target information.Finally,the optimal threshold is obtained by combining information entropy and Tsallis entropy,and the edge detection image is obtained.Experimental results show that the proposed algorithm can effectively detect the edge contours of degraded underwater images,remove false edge situations,and accurately extract the feature edges of the image.At the same time,tests show that the algorithm performs well in edge detection of atmospheric haze images.
作者 王晓琦 赵宣植 刘增力 WANG Xiao-qi;ZHAO Xuan-zhi;LIU Zeng-li(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500;Yunnan Key Laboratory of Artificial Intelligence,Kunming University of Science and Technology,Kunming 650500,China)
出处 《计算机工程与科学》 CSCD 北大核心 2023年第7期1245-1252,共8页 Computer Engineering & Science
基金 国家自然科学基金(61271007)。
关键词 水下图像 边缘检测 多尺度小波 TSALLIS熵 underwater image edge detection multiscale wavelet Tsallis entropy
  • 相关文献

参考文献7

二级参考文献60

  • 1Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38, Article No. 13, DOI: 10.1145/1177352.1177355.
  • 2Sezgin M, Sankur B. Survey over image thresholding tech- niques and quantitative performance evaluation. Journal of Electronic Imaging, 2004, 13(1): 146-168.
  • 3Vantaram S R, Saber E. Survey of contemporary trends in color image segmentation. Journal of Electronic Imaging, 2012, 21(4): 040901-1-040901-28.
  • 4Oh H H, Lim K T, Chien S I. An improved binarization algorithm based on a water flow model for document im- age with inhomogeneous backgrounds. Pattern Recognition, 2005, 38(12): 2612-2625.
  • 5Chou C H, Lin W H, Chang F. A binarization method with learning-build rules for document images produced by cam- eras. Pattern Recognition, 2010, 43(4): 1518--1530.
  • 6Wen J T, Li S M, Sun J D. A new binarization method for non-uniform illuminated document images. Pattern Recog- nition, 2013, 46(6): 1670-1690.
  • 7Ng H F. Automatic thresholding for defect detection. Pat- tern Recognition Letters, 2006, 27(14): 1644-1649.
  • 8Anagnostopoulos C N E, Anagnostopoulos I E, Psoroulas I D, Loumos V, Kayafas E. License plate recognition from still images and videos sequences: a survey. IEEE Transacrions on Intelligent Transportation Systems, 2008, 9(3): 377-391.
  • 9Otsu N. A threshold selection method from gray-level his- tograms. IEEE Transactions on Systems, Man and Cyber- neticsm 1979, 9(1): 62-66.
  • 10Xu X Y, Xu S Z, Jin L H, Song E M. Characteristic analysis of Otsu threshold and its applications. Pattern Recognition Letters, 2911, 32(7): 956-961.

共引文献125

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部