期刊文献+

一种基于CNN算法的步态识别模型研究

Research on a gait recognition model based on CNN algorithm
下载PDF
导出
摘要 为解决传统步态识别模型训练时间长、识别准确率低等问题,文章构建了能够进行深度学习的行走时步态特征数据库,通过对所选取特征的特定性、关联性和稳定性的研究,建立步态特征矩阵,利用Tensorflow设计CNN算法进行深度学习,使其能够自动实现基于行走时步态特征的个人识别。在27名实验者情况下,该模型的识别准确率可达99%以上,且训练时间较短,优于目前已发表的其他模型,对构建更大数据库的识别系统具有启发意义。 In order to solve the problems of long training time and low recognition accuracy of traditional gait recognition models,a walking gait feature database capable of deep learning is built.Through the study of the specificity,relevance and stability of the selected features,a gait feature matrix is established.The CNN algorithm designed by Tensorflow is used for deep learning,so that it can automatically realize personal recognition based on walking gait features.In the case of 27 experimenters,the recognition accuracy of the model can reach more than 99%,and the training time is shorter,which is superior to other published models.It is instructive for building a recognition system with a larger database.
作者 张亦鸣 王秋轶 吴梓睿 李文琳 朱鹏宇 丁浩 Zhang Yiming;Wang Qiuyi;Wu Zirui;Li Wenlin;Zhu Pengyu;Ding Hao(Jiangsu Police Institute,Nanjing 210000,China)
机构地区 江苏警官学院
出处 《无线互联科技》 2023年第12期139-141,共3页 Wireless Internet Technology
基金 江苏警官学院学生科研项目课题,项目编号:202210329035Y。
关键词 步态识别 CNN算法 深度学习 gait recognition CNN algorithm deep learning
  • 相关文献

参考文献6

二级参考文献106

  • 1田光见,赵荣椿.基于傅立叶描绘子的步态识别[J].计算机应用,2004,24(11):124-125. 被引量:4
  • 2赵黎丽,侯正信.步态识别问题的特点及研究现状[J].中国图象图形学报,2006,11(2):151-161. 被引量:16
  • 3耿磊,吴晓娟,张恒.基于踝关节轨迹的身份识别算法[J].电子技术应用,2006,32(5):42-44. 被引量:5
  • 4Kuchi P,Panchanathan S.Intrinsic mode functions for gait recognition[A].In:Proceedings of the 2004 International Symposium on Circuits and Systems[C],Vancouver,Canada,2004,2:Ⅱ-117 ~Ⅱ-120.
  • 5Lee Chan-su,Elgammal A.Gait style and gait content:bilinear models for gait recognition using gait re-sampling[A].In:Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition[C].Seoul,Korea,2004:147 ~ 152.
  • 6Urtasun R,Fua P.3D tracking for gait characterization and recognition[A].In:Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition[C],Seoul,Korea,2004:17 ~22.
  • 7Kale A,Roychowdhury A K,Chellappa R.Fusion of gait and face for human identification[A].In:Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing[C],Montreal,Canada,2004,5:Ⅴ-901 ~Ⅴ-904.
  • 8Mowbray S D,Nixon M S.Extraction and recognition of periodically deforming objects by continuous,spatio-temporal shape description[A].In:Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],Washington DC,USA,2004,2:Ⅱ-895 ~Ⅱ-901.
  • 9Yoo J-H,Nixon M S.On laboratory gait analysis via computer vision[A].In:Proceedings AISB ' 03 Symposium on Biologically-Inspired Machine Vision,Theory and Application[C],University of Wales,Aberystwyth,UK,2003:109 ~ 113.
  • 10Moon,Phillips P J.The FERET verification testing protocol for face recognition algorithms[A].In:Proceedings of Third IEEE International Conference on Automatic Face and Gesture Recognition[C],Nara,Japan,1998:48 ~53.

共引文献190

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部