期刊文献+

舰船安全研究中的神经网络数据挖掘方法

Neural Network Data Mining Method in Ship Safety Research
下载PDF
导出
摘要 当前人工智能技术迅猛发展,在各个领域掀起了技术改革的浪潮,神经网络技术无疑是其中一个突出的代表,它在数据处理或是数据挖掘中已有不少突出的成果,可将日常舰船安全领域的实验或训练中的大量经验数据进行合理的分析与利用。为后续研究提供有价值的参考,遴选了相关文献。首先概述了基于数据支撑的舰船安全技术的研究,然后总结了国内外学者基于神经网络的数据挖掘方法在舰船运动状态参数及生命力指标计算、舰船安全风险评估与预测、智能化损管辅助决策等方面的研究。研究认为将神经网络技术结合舰船安全相关技术中数据特点进行开发与利用,为高效保障舰船生命力有重要贡献;并对未来深度学习等前沿技术发展、舰艇无人化以及神经网络算法创新做出了展望。 At present,the rapid development of artificial intelligence technology,neural network technology is one of the outstanding representative,it has many outstanding achievements in data mining,can reasonably analyze and use a large number of experience data in the field of ship safety.Relevant literature is selected to provide valuable reference for follow-up research.Firstly,this paper summarizes the research of ship safety technology based on data support,and then summarizes the research of data mining method based on neural network in the calculation of ship motion state parameters and vitality index,ship safety risk assessment and prediction,intelligent loss control assisted decision and so on.It is concluded that the development and utilization of neural network technology combined with the data characteristics of ship safety related technology will make an important contribution to the efficient guarantee of ship vitality.The future development of cutting-edge technologies such as deep learning,warship unmanned and neural network algorithm innovation are prospected.
作者 周洪景 任凯 ZHOU Hongjing;REN Kai(College of Power Engineering,Naval University of Engineering,Wuhan 430033)
出处 《舰船电子工程》 2023年第5期119-125,共7页 Ship Electronic Engineering
基金 国家部委基金项目(编号:1020201021001)资助。
关键词 神经网络 数据挖掘 舰船安全 人工智能 neural network DM(data mining) ship safety artificial intelligence
  • 相关文献

参考文献2

二级参考文献4

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部