期刊文献+

基于PSO算法的通信网络流量异常智能监测方法 被引量:4

Study on Intelligent Monitoring of Communication Network Traffic Based on PSO Algorithm
下载PDF
导出
摘要 常规的通信网络流量异常监测方法在监测效率方面无法较好地满足通信网络流量监测的精度需求,为此提出基于粒子群优化(Particle Swarm Optimization,PSO)算法的通信网络流量异常智能监测方法。首先,根据通信网络流量特征构建经验库,利用PSO算法优化通信网络粒子群;其次,寻找全局最优解,通过分级的智能监测模式获取流量异常智能监测结果;最后,进行实验对比分析。实验结果表明,该方法的网络流量异常智能监测准确率较高,均达到96%以上,满足通信网络流量监测精度方面的需求。 Conventional communication network traffic anomaly monitoring methods cannot meet the accuracy requirements of communication network traffic monitoring in terms of monitoring efficiency.Therefore,an intelligent communication network traffic anomaly monitoring method based on Particle Swarm Optimization(PSO)algorithm is proposed.Firstly,an experience base is constructed based on the traffic characteristics of the communication network,and the PSO algorithm is used to optimize the communication network particle swarm.Secondly,search for the global optimal solution and obtain intelligent monitoring results for traffic anomalies through a hierarchical intelligent monitoring mode.Finally,conduct experimental comparative analysis.The experimental results show that the intelligent monitoring accuracy of network traffic anomalies using this method is high,reaching over 96%,which meets the accuracy requirements of communication network traffic monitoring.
作者 张玲玲 ZHANG Linging(Jiangsu Sucheng Vocational School,Suqian Jiangsu 223800,China)
出处 《信息与电脑》 2023年第10期88-90,共3页 Information & Computer
关键词 粒子群优化(PSO) 通信流量 网络监测 网络粒子群 Particle Swarm Optimization(PSO) communication traffic network monitoring network particle swarm optimization
  • 相关文献

参考文献10

二级参考文献120

共引文献105

同被引文献29

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部