期刊文献+

基于EEMD-DWT方法的冷轧机架振动信号联合降噪研究 被引量:3

Joint noise reduction research on vibration signal for cold rolling mill frame based on EEMD-DWT method
原文传递
导出
摘要 为了提高冷轧机的故障诊断能力,综合运用集合经验模态分解(EEMD)算法和小波阈值变换(DWT)的降噪技术,设计了一种EEMD-DWT联合降噪技术,确保在去除噪声的前提下充分保留有用特征。采用EEMD-DWT模式去噪时获得了光滑的曲线信号,表现出优异的去噪效果。应用信号结果表明:以EEMD-DWT去噪时包含明显的冲击特征,有效地减小了位于幅值接近零区域的噪声分量,确保噪声被充分去除的同时实现原有振动特征的有效保留。单独利用DWT或EEMD方法去噪时将会引起有效信息大量丢失,以EEMD-DWT联合去噪方法进行处理时能够达到理想的降噪效果,充分保留信号包含的有用参数。其能够准确识别冷轧机不同的故障程度,对提高同类机械传动设备的故障诊断水平具有很好的理论支撑意义。 In order to improve the fault diagnosis ability of cold rolling mill,comprehensively using the noise reduction technology of Ensemble Empirical Mode Decomposition(EEMD)algorithm and Discrete Wavelet Transformation(DWT),a joint noise reduction technology by EEMD-DWT was designed,and it was ensured that the useful features were fully preserved under the premise of removing noise.Then,the smooth curve signal was obtained by using EEMD-DWT mode for denoising,which showed excellent denoising effect.The application signal results show that when denoising with EEMD-DWT,it includes obvious impact characteristics,which effectively reduces the noise component in the region where the amplitude is near zero,and ensures that the original vibration characteristics are effectively reserved when the noise is fully removed.When DWT or EEMD method is used alone for denoising,a large amount of effective information is lost.When the EEMD-DWT joint noise reduction method is used for processing,the ideal noise reduction effect is achieved,and the useful parameters contained in the signal are fully preserved.Thus,this research can accurately identify different fault degrees of cold rolling mill,which has good theoretical support significance for improving the fault diagnosis level of similar mechanical transmission equipment.
作者 康家林 徐江莉 姚传安 Kang Jialin;Xu Jiangli;Yao Chuan′an(College of Electronic Information Engineering,Zhengzhou City Vocational College,Zhengzhou 452370,China;College of Mechanical and Electrical Engineering,Henan Agricultural University,Zhengzhou 450002,China)
出处 《锻压技术》 CAS CSCD 北大核心 2023年第7期156-161,183,共7页 Forging & Stamping Technology
基金 河南省高等学校重点科研项目(21B460003)。
关键词 冷轧机 振动信号 联合降噪 重构 故障诊断 cold rolling mill vibration signal joint noise reduction refactoring fault diagnosis
  • 相关文献

参考文献15

二级参考文献116

共引文献83

同被引文献31

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部