期刊文献+

变量选择结合模型更新以改进苹果的糖度检测 被引量:1

Variable selection combined with model updating to improve soluble solids content detection in apples
下载PDF
导出
摘要 为了获得稳健的近红外光谱模型,采用变量选择结合模型更新的方法,以240个红富士苹果为对象,取得近红外漫透射光谱和糖度数据,建立偏最小二乘回归模型,对苹果糖度含量进行预测,并采用后向区间偏最小二乘法和竞争性自适应重加权算法,对建模变量进行了选择,通过将新批次中的一些样品加入到旧批次中重新校准来实现模型更新。结果表明,变量选择可以提高模型性能,预测决定系数提高到0.7915,预测均方根误差降低到0.5810,预测偏差降至0.2627;结合模型更新策略,可以进一步降低预测均方根误差和预测偏差;仅使用20个样品进行模型更新已经明显改善了模型性能,预测决定系数提高到0.8506,预测均方根误差降到0.4358,预测偏差降到0.1045。这一结果对于多种水果建立稳健的近红外光谱模型是有帮助的。 In order to obtain a robust near infrared spectral model,a method based on variate selection and model updating was adopted.240 Red Fuji apples were used to obtain near infrared diffuse transmission spectra and soluble solids content data,and a partial least squares regression model was developed to predict apple soluble solids content.The modelling variates were selected by using backward interval partial least squares and competitive adaptive reweighting algorithms.The model was updated by adding some samples from the new batch to the old batch and recalibrating.The results indicate that the model performance can be improved by variable selection,with the prediction coefficient of determination increasing to 0.7915,the root mean square error of prediction decreasing to 0.5810 and the prediction bias decreasing to 0.2627.Combining the model update strategy,the root mean square error of prediction and the prediction bias were further reduced.Model updating using only 20 samples has already led to a significant improvement in model performance,with the prediction coefficient of determination improving to 0.8506,the root mean square error of prediction decreasing to 0.4358 and the prediction bias decreasing to 0.1045,the result that is useful for robust near infrared spectroscopy modelling of a wide range of fruits.
作者 姜小刚 姚金良 朱明旺 李斌 廖军 刘燕德 欧阳爱国 JIANG Xiaogang;YAO Jinliang;ZHU Mingwang;LI Bin;LIAO Jun;LIU Yande;OUYANG Aiguo(School of Intelligent Electromechanical Equipment Innovation Research Institute,East China Jiaotong University,Nanchang 330013,China)
出处 《激光技术》 CAS CSCD 北大核心 2023年第5期666-671,共6页 Laser Technology
基金 国家自然科学基金资助项目(31760344) 江西省青年科学基金资助项目(20171BAB212021)。
关键词 光谱学 后向区间偏最小二乘 竞争性自适应重加权 苹果 模型更新 spectroscopy backward interval partial least squares competitive adaptive reweighted sampling apple model update
  • 相关文献

参考文献6

二级参考文献91

共引文献49

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部