摘要
为满足不断攀升的两机涡轮动力系统的快速发展,表面冲击强化技术在涡轮转子用高温合金表面强化的应用及相应机制的研究受到了广泛关注。然而,高温合金表面硬化层在高温服役环境下的回复、再结晶行为难以避免,由此引起的表面强韧化、抗疲劳效果的退化,成为制约表面冲击强化技术在先进高温合金关键部件深入应用的瓶颈。本文总结了近年来镍基高温合金表面冲击强化机制及应用研究进展,分析了表面冲击强化对镍基高温合金表面强韧性及抗疲劳的作用规律,探究了高温合金表面冲击硬化层在高温及长期时效过程中的显微组织、微结构演化及其对高温稳定性的作用机理。以期为发展镍基高温合金表面冲击强化、提高两机涡轮转子疲劳抗力提供基础。
There has been rapid development in the turbine power systems of aeroengines and gas turbines.Consequently,the application of surface impact strengthening technology for the surface strengthening of superalloys used in turbine rotors and its corresponding mechanisms have attracted wide attention.However,it is difficult to prevent the recovery and recrystallization of the surface hardened layer of superalloys serviced at high temperatures.This leads to the degradation of both the surface strengthening/toughening and fatigue resistance.This is the main hurdle restricting the wide application of surface impact strengthening technology for key components of advanced superalloys.In this paper,the progress made in surface impact strengthening mechanisms and the applications of nickel-based superalloys in recent years are summarized.The effect of surface impact strengthening on the surface strength,toughness,and fatigue resistance of nickel-based superalloys is analyzed.The evolution of the microstructure of the hardened surface of the alloys during long-term aging at high temperatures,and its effect on high-temperature stability are explored.The paper aims to provide essential and important information for developing surface impact strengthening mechanisms of nickel-based superalloys and improving the fatigue resistance of turbine rotors of aeroengines and gas turbines.
作者
王磊
刘梦雅
刘杨
宋秀
孟凡强
WANG Lei;LIU Mengya;LIU Yang;SONG Xiu;MENG Fanqiang(Key Laboratory for Anisotropy and Texture of Materials,Ministry of Education,Northeastern University,Shenyang 110819,China;Sino-French Institute of Nuclear Engineering and Technology,Sun Yat-Sen University,Zhuhai 519000,China)
出处
《金属学报》
SCIE
EI
CAS
CSCD
北大核心
2023年第9期1173-1189,共17页
Acta Metallurgica Sinica
基金
国家重点研发计划项目Nos.2022YFB3705101和2022YFB3705102
国家科技重大专项项目No.J2019-VI-0020-0136
国家自然科学基金项目Nos.U1708253和51571052。